The Whiteshell Reactor No. 1, or WR-1, was a Canadian
research reactor
Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritim ...
located at
AECL
Atomic Energy of Canada Limited (AECL, Énergie atomique du Canada limitée, EACL) is a Canadian Crown corporation and the largest nuclear science and technology laboratory in Canada. AECL developed the CANDU reactor technology starting in the ...
's
Whiteshell Laboratories (WNRL) in
Manitoba
Manitoba is a Provinces and territories of Canada, province of Canada at the Centre of Canada, longitudinal centre of the country. It is Canada's Population of Canada by province and territory, fifth-most populous province, with a population ...
. Originally known as Organic-Cooled Deuterium-Reactor Experiment (OCDRE), it was built to test the concept of a
CANDU-type reactor that replaced the
heavy water
Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
coolant with an
oil
An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) and lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturate ...
substance. This had a number of potential advantages in terms of cost and efficiency.
The 60 MWth reactor was designed and built by Canadian
General Electric
General Electric Company (GE) was an American Multinational corporation, multinational Conglomerate (company), conglomerate founded in 1892, incorporated in the New York (state), state of New York and headquartered in Boston.
Over the year ...
for a cost of $14.5 million CAD. The construction started 1 November 1962.
It achieved
criticality on 1 November 1965
and full power in December 1965. An effort to commercialize the design began in 1971 but ended in 1973 when the heavy water cooled units became the standard. From then on WR-1 operated at reduced power limits for
irradiation
Irradiation is the process by which an object is exposed to radiation. An irradiator is a device used to expose an object to radiation, most often gamma radiation, for a variety of purposes. Irradiators may be used for sterilizing medical and p ...
experiments and heating the WNRE site.
WR-1 was shut down for the last time on 17 May 1985, was defuelled, and is undergoing
decommissioning scheduled to be completed in 2023.
Design
Basic fission
Natural uranium
Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
consists of a mix of
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s, mostly
238U and a much smaller amount of
235U. Both of these isotopes can undergo
fission when struck by a
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
of sufficient energy, and as part of this process, they will give off medium-energy neutrons. However, only
235U can undergo fission when struck by neutrons from other uranium atoms, allowing it to maintain a
chain reaction
A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events.
Chain reactions are one way that sys ...
.
238U is insensitive to these neutrons and it thus not
fissile
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
like
235U. While
235U is sensitive to these neutrons, the reaction rate is greatly improved if the neutrons are slowed from their original relativistic speeds to much lower energies, the so-called
thermal neutron
The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wit ...
velocities.
In a mass of pure natural uranium, the number and energy of the neutrons being released through natural decay are too low to cause appreciable fission events in the few
235U atoms present. In order to increase the rate of neutron capture to the point where a chain reaction can occur, known as
criticality, the system has to be modified. In most cases, the fuel mass is separated into a large number of smaller ''fuel pellets'' and then surrounded by some form of
neutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely ...
that will slow the neutrons, thereby increasing the chance that the neutrons will cause fission in
235U in other pellets. Often the simplest moderator to use is normal water; when a neutron collides with a water molecule it transfers some of its energy to it, increasing the temperature of the water and slowing the neutron.
[
The main problem with using normal water as a moderator is that it also absorbs some of the neutrons. The neutron balance in the natural isotopic mix is so close that even a small number being absorbed in this fashion means there are too few to maintain criticality. In most reactor designs this is addressed by slightly increasing the amount of 235U relative to 238U, a process known as enrichment. The resulting fuel typically contains between 3 and 5% 235U, up from the natural value of just under 1%. The leftover material, now containing almost no 235U and consisting of almost pure 238U, is known as ]depleted uranium
Depleted uranium (DU), also referred to in the past as Q-metal, depletalloy, or D-38, is uranium with a lower content of the fissile isotope Uranium-235, 235U than natural uranium. The less radioactive and non-fissile Uranium-238, 238U is the m ...
.
Conventional CANDU
The CANDU design addresses the moderation problem by replacing the normal water with heavy water
Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
. Heavy water already has an extra neutron, so the chance that a fission neutron will be absorbed during moderation is largely eliminated. Additionally, it is subject to other reactions that further increase the number of neutrons released during operation. The neutron economy is improved to the point where even unenriched natural uranium
Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
will maintain criticality, which greatly reduces the complexity and cost of fueling the reactor, and also allows it to use a number of alternative fuel cycles that mix in even less reactive elements. The downside to this approach is that the 235U atoms in the fuel are spread out through a larger fuel mass, which makes the reactor core larger for any given power level. This can lead to higher capital costs for building the reactor core.
To address the cost issue, CANDU uses a unique reactor core layout. Conventional reactor designs consist of a large metal cylinder containing the fuel and moderating water, which is run under high pressure in order to increase the boiling point of the water so that it removes heat more efficiently. At the time CANDU was being designed, Canada lacked the facilities to make such large pressure vessels, especially ones large enough to run on natural uranium. The solution was to enclose the pressurized heavy water within smaller tubes and then insert these into a much larger low-pressure vessel known as the ''calandria''. One major advantage of this layout is that the fuel can be removed from the individual tubes which allow the design to be refuelled while operating, while conventional designs require the entire reactor core to be shut down. A small disadvantage is that tubes absorb some neutrons as well, but not nearly enough to offset the improved neutron economy of the heavy water design.
Organic coolant
A significant problem with using any sort of water as a coolant is that the water tends to dissolve the fuel and other components and ends up becoming highly radioactive as these materials are deposited in the water. This is mitigated by using particular alloys for the tubes and processing the fuel into a ceramic form. While effective at reducing the rate of dissolution, this adds to the cost of processing the fuel while also requiring materials that are both non-corrosive while also being less susceptible to neutron embrittlement Neutron embrittlement, sometimes more broadly radiation embrittlement, is the embrittlement of various materials due to the action of neutrons. This is primarily seen in nuclear reactors, where the release of high-energy neutrons causes the long-te ...
. More of an issue is the fact that water has a low boiling point
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envi ...
, limiting the operating temperatures.
This was the basic premise of the organic nuclear reactor design. In the CANDU layout, the moderator and coolant both used heavy water, but there was no reason for this other than expediency. Since the bulk of the moderation occurred in the calandria mass, replacing the small amount of heavy water in the fuel tubes with some other coolant was straightforward, unlike conventional light water designs where some other moderator would have to be added. Using oil meant the issues with corrosion were greatly reduced, allowing more conventional metals to be used while also reducing the amount of dissolved fuel, and in turn, radiation in the cooling system. The organic liquid that was selected, OS-84, is a mixture of terphenyl
Terphenyls are a group of closely related aromatic hydrocarbons. Also known as diphenylbenzenes or triphenyls, they consist of a central benzene ring substituted with two phenyl groups. There are three substitution patterns: ''ortho''-terpheny ...
s treated catalytically with hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
to produce 40 percent saturated hydrocarbon
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in whi ...
s. The terphenyls are petrochemical
Petrochemicals (sometimes abbreviated as petchems) are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable s ...
derivatives that were readily available and were already in use as heat transfer media.
Additionally, by using a material with a higher boiling point, the reactor could be operated at higher temperatures. This not only reduced the amount of coolant needed to remove a given amount of energy, and thereby reduced the physical size of the core, but also increases the efficiency of the turbine
A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
s used to extract this energy for electrical generation. WR-1 ran with outlet temperatures up to 425 °C, compared to about 310 °C in the conventional CANDU. This also meant that there is no need to pressurize the cooling fluid beyond what is needed to force it through the cooling tubes at the required rate, whereas water must be held under high pressure to allow it to reach higher temperatures. This allowed the fuel tubes to be made thinner, reducing the number of neutrons lost in interactions with the tubing, and further increasing the neutron economy.
The reactor had vertical fuel channels, in contrast with the normal CANDU arrangement where the tubes are horizontal. The reactor did not use conventional control rods, but relied on control of the level of the heavy water moderator to adjust the power output. The reactor could be shut down quickly (SCRAM
A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
ed) by the rapid dumping of the moderator.
Commercialization
In 1971 AECL initiated design engineering of a 500 MWe CANDU-OCR, based on uranium carbide fuel. Carbide fuels would corrode in water but not the oil coolant. Carbide fuels were much easier to produce than the more complex ceramics being used in most reactor designs. This design effort was shut down in 1973, but WR-1 tested the concept anyway. Another possibility was to use metallic fuel, which would increase the density of the fuel and offer higher burnup. The metallic fuel conducts heat better so that a higher power core could be used in the same space.
Accidents
There were three loss-of-coolant-accidents that took place at WR-1 over its lifetime. Two reached the Winnipeg River. The first leak was in 1967, where approximately 300 litres of coolant reached the river through the outfall (the discharge point of the liquid waste) as a result of a pin-hole leak in one of the tubes in the heat exchanger. The second leak took place in 1977: AECL
Atomic Energy of Canada Limited (AECL, Énergie atomique du Canada limitée, EACL) is a Canadian Crown corporation and the largest nuclear science and technology laboratory in Canada. AECL developed the CANDU reactor technology starting in the ...
calculated that between 900 kg and 1,100 kg of coolant was deposited on the riverbed up to 1 km downstream of the outfall, and was subsequently cleaned up and monitored. The third coolant leak occurred in 1978 where the leaked coolant was cleaned up and stored on site and no coolant was released into the river. In 2006, AECL analyzed river sediment core samples at areas downstream of the site where deposits from the outfall were found. AECL concluded that there was no contamination of the river sediments that would have an ecological impact or affect human health.
Status
WR1 was shut down for the last time for economic reasons, on May 17, 1985 although it was the youngest of AECL
Atomic Energy of Canada Limited (AECL, Énergie atomique du Canada limitée, EACL) is a Canadian Crown corporation and the largest nuclear science and technology laboratory in Canada. AECL developed the CANDU reactor technology starting in the ...
's large research reactors. The reactor is in an interim decommissioning stage, defuelled and largely disassembled. The site will be returned to greenfield status at the end of decommissioning.
See also
* Gentilly Nuclear Generating Station, a boiling-water cooled CANDU reactor
Notes
References
Bibliography
*
External links
The Canadian Nuclear FAQ
AECL - Atomic Energy of Canada Limited
Atomic Energy of Canada Limited
Canadian Nuclear Association
{{authority control
Nuclear research reactors