Von Dyck Group
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a triangle group is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
that can be realized geometrically by sequences of reflections across the sides of a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three point (geometry), points called ''angles'' or ''vertices''. Just as in the Euclidea ...
. Each triangle group is the
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of a tiling of the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
, the
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, or the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
by
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In modu ...
triangles called Möbius triangles, each one a
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
for the action.


Definition

Let ''l'', ''m'', ''n'' be
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s greater than or equal to 2. A triangle group Δ(''l'',''m'',''n'') is a group of motions of the Euclidean plane, the two-dimensional sphere, the real projective plane, or the hyperbolic plane generated by the reflections in the sides of a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
with angles π/''l'', π/''m'' and π/''n'' (measured in
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s). The product of the reflections in two adjacent sides is a
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
by the angle which is twice the angle between those sides, 2π/''l'', 2π/''m'' and 2π/''n''. Therefore, if the generating reflections are labeled ''a'', ''b'', ''c'' and the angles between them in the cyclic order are as given above, then the following relations hold: # a^=b^=c^=1 # (ab)^=(bc)^=(ca)^=1. It is a theorem that all other relations between ''a, b, c'' are consequences of these relations and that Δ(''l,m,n'') is a
discrete group In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and ...
of motions of the corresponding space. Thus a triangle group is a reflection group that admits a
group presentation In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
: \Delta(l,m,n) = \langle a,b,c \mid a^ = b^ = c^ = (ab)^ = (bc)^ = (ca)^ = 1 \rangle. An abstract group with this presentation is a
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
with three generators.


Classification

Given any natural numbers ''l'', ''m'', ''n'' > 1 exactly one of the classical two-dimensional geometries (Euclidean, spherical, or hyperbolic) admits a triangle with the angles (π/l, π/m, π/n), and the space is tiled by reflections of the triangle. The sum of the angles of the triangle determines the type of the geometry by the
Gauss–Bonnet theorem In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a Surface (topology), surface to its underlying topology. In the simplest applicati ...
: it is Euclidean if the angle sum is exactly π, spherical if it exceeds π and hyperbolic if it is strictly smaller than π. Moreover, any two triangles with the given angles are congruent. Each triangle group determines a tiling, which is conventionally colored in two colors, so that any two adjacent tiles have opposite colors. In terms of the numbers ''l'', ''m'', ''n'' > 1 there are the following possibilities.


The Euclidean case

\frac+\frac+\frac=1. The triangle group is the infinite
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of a certain
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety ...
(or tiling) of the Euclidean plane by triangles whose angles add up to π (or 180°). Up to permutations, the triple (''l'', ''m'', ''n'') is one of the triples (2,3,6), (2,4,4), (3,3,3). The corresponding triangle groups are instances of
wallpaper group A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetry, symmetries in the pattern. Such patterns occur frequently in architecture a ...
s.


The spherical case

:\frac+\frac+\frac>1. The triangle group is the finite symmetry group of a tiling of a unit sphere by spherical triangles, or Möbius triangles, whose angles add up to a number greater than π. Up to permutations, the triple (''l'',''m'',''n'') has the form (2,3,3), (2,3,4), (2,3,5), or (2,2,''n''), ''n'' > 1. Spherical triangle groups can be identified with the symmetry groups of
regular polyhedra A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different eq ...
in the three-dimensional Euclidean space: Δ(2,3,3) corresponds to the
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
, Δ(2,3,4) to both the
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
and the
octahedron In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
(which have the same symmetry group), Δ(2,3,5) to both the
dodecahedron In geometry, a dodecahedron (; ) or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three Kepler–Po ...
and the
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical tha ...
. The groups Δ(2,2,''n''), ''n'' > 1 of
dihedral symmetry In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, g ...
can be interpreted as the symmetry groups of the family of dihedra, which are degenerate solids formed by two identical regular ''n''-gons joined together, or dually hosohedra, which are formed by joining ''n''
digon In geometry, a bigon, digon, or a ''2''-gon, is a polygon with two sides (edge (geometry), edges) and two Vertex (geometry), vertices. Its construction is Degeneracy (mathematics), degenerate in a Euclidean plane because either the two sides wou ...
s together at two vertices. The
spherical tiling In geometry, a spherical polyhedron or spherical tiling is a tessellation, tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called ''spherical polygons''. A polyhedron whose vertices are equi ...
corresponding to a regular polyhedron is obtained by forming the
barycentric subdivision In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension to simplicial complexes is a canonical method to refining them. Therefore, the barycentric subdivision is an important tool ...
of the polyhedron and projecting the resulting points and lines onto the circumscribed sphere. In the case of the tetrahedron, there are four faces and each face is an equilateral triangle that is subdivided into 6 smaller pieces by the medians intersecting in the center. The resulting tesselation has 4 × 6=24 spherical triangles (it is the spherical disdyakis cube). These groups are finite, which corresponds to the compactness of the sphere – areas of discs in the sphere initially grow in terms of radius, but eventually cover the entire sphere. The triangular tilings are depicted below: Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even ''n'' are centrally symmetric. Hence each of them determines a tiling of the real projective plane, an elliptic tiling. Its symmetry group is the quotient of the spherical triangle group by the reflection through the origin (-''I''), which is a central element of order 2. Since the projective plane is a model of
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
, such groups are called ''elliptic'' triangle groups.


The hyperbolic case

:\frac+\frac+\frac<1. The triangle group is the infinite symmetry group of a tiling of the hyperbolic plane by hyperbolic triangles whose angles add up to a number less than π. All triples not already listed represent tilings of the hyperbolic plane. For example, the triple (2,3,7) produces the
(2,3,7) triangle group In the theory of Riemann surfaces and hyperbolic geometry, the triangle group (2,3,7) is particularly important for its connection to Hurwitz surfaces, namely Riemann surfaces of genus ''g'' with the largest possible order, 84(''g'' − 1), of it ...
. There are infinitely many such groups; the tilings associated with some small values:


Hyperbolic plane

Hyperbolic triangle groups are examples of non-Euclidean crystallographic group and have been generalized in the theory of Gromov hyperbolic groups.


Von Dyck groups

Denote by ''D''(''l'',''m'',''n'') the
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of
index Index (: indexes or indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on the Halo Array in the ...
2 in ''Δ(l,m,n)'' generated by words of even length in the generators. Such subgroups are sometimes referred to as "ordinary" triangle groups or von Dyck groups, after
Walther von Dyck Walther Franz Anton von Dyck (6 December 1856 – 5 November 1934), born Dyck () and later ennobled, was a German mathematician. He is credited with being the first to define a mathematical group, in the modern sense in . He laid the foundation ...
. For spherical, Euclidean, and hyperbolic triangles, these correspond to the elements of the group that preserve the
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
of the triangle – the group of rotations. For projective (elliptic) triangles, they cannot be so interpreted, as the projective plane is non-orientable, so there is no notion of "orientation-preserving". The reflections are however ''locally'' orientation-reversing (and every manifold is locally orientable, because locally Euclidean): they fix a line and at each point in the line are a reflection across the line. The group ''D''(''l'',''m'',''n'') is defined by the following presentation: :D(l,m,n)=\langle x,y \mid x^l,y^m,(xy)^n\rangle. In terms of the generators above, these are ''x = ab, y = ca, yx = cb''. Geometrically, the three elements ''x'', ''y'', ''xy'' correspond to rotations by 2π/''l'', 2π/''m'' and 2π/''n'' about the three vertices of the triangle. Note that ''D''(''l'',''m'',''n'') ≅ ''D''(''m'',''l'',''n'') ≅ ''D''(''n'',''m'',''l''), so ''D''(''l'',''m'',''n'') is independent of the order of the ''l'',''m'',''n''. A hyperbolic von Dyck group is a
Fuchsian group In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or co ...
, a discrete group consisting of orientation-preserving isometries of the hyperbolic plane.


Overlapping tilings

Triangle groups preserve a tiling by triangles, namely a
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
for the action (the triangle defined by the lines of reflection), called a Möbius triangle, and are given by a triple of ''integers,'' (''l'',''m'',''n''), – integers correspond to (2''l'',2''m'',2''n'') triangles coming together at a vertex. There are also tilings by overlapping triangles, which correspond to Schwarz triangles with ''rational'' numbers (''l''/''a'',''m''/''b'',''n''/''c''), where the denominators are
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
to the numerators. This corresponds to edges meeting at angles of ''a''π/''l'' (resp.), which corresponds to a rotation of 2''a''π/''l'' (resp.), which has order ''l'' and is thus identical as an abstract group element, but distinct when represented by a reflection. For example, the Schwarz triangle (2 3 3) yields a
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
1 tiling of the sphere, while the triangle (2 3/2 3) yields a density 3 tiling of the sphere, but with the same abstract group. These symmetries of overlapping tilings are not considered triangle groups.


History

Triangle groups date at least to the presentation of the
icosahedral group In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of th ...
as the (rotational) (2,3,5) triangle group by
William Rowan Hamilton Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathema ...
in 1856, in his paper on
icosian calculus The icosian calculus is a non-commutative algebraic structure discovered by the Irish mathematician William Rowan Hamilton in 1856. In modern terms, he gave a group presentation of the icosahedral group, icosahedral rotation group by Generating se ...
.


Applications

Triangle groups arise in
arithmetic geometry In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties. ...
. The
modular group In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
is generated by two elements, ''S'' and ''T'', subject to the relations ''S''² = (''ST'')³ = 1 (no relation on ''T''), is the rotational triangle group (2,3,∞) and maps onto all triangle groups (2,3,''n'') by adding the relation ''T''''n'' = 1. More generally, the Hecke group ''H''''q'' is generated by two elements, ''S'' and ''T'', subject to the relations ''S''2 = (''ST'')''q'' = 1 (no relation on ''T''), is the rotational triangle group (2,''q'',∞), and maps onto all triangle groups (2,''q'',''n'') by adding the relation ''T''''n'' = 1 the modular group is the Hecke group ''H''3. In
Grothendieck Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research ext ...
's theory of dessins d'enfants, a Belyi function gives rise to a tessellation of a
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
by reflection domains of a triangle group. All 26
sporadic group In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simpl ...
s are quotients of triangle groups, of which 12 are Hurwitz groups (quotients of the (2,3,7) group).


See also

* Schwarz triangle * The Schwarz triangle map is a map of triangles to the
upper half-plane In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example ...
. *
Geometric group theory Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these group ...


References

* * *


External links

* Elizabeth r che
triangle groups
(2010) desktop background pictures {{PlanetMath attribution, id=5925, title=Triangle groups Finite groups Polyhedra Tessellation Spherical trigonometry Euclidean geometry Hyperbolic geometry Properties of groups Coxeter groups Geometric group theory