Voltage-sensitive Calcium Channel
   HOME

TheInfoList



OR:

Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of
voltage-gated ion channel Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in the electrical membrane potential near the channel. The membrane potential alters the conformation of the channel proteins, ...
s found in the membrane of excitable cells (''e.g.'',
muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to
sodium ion Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable is ...
s, so they are also called Ca2+-Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions. At
physiologic Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemical ...
or resting
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
, VGCCs are normally closed. They are activated (''i.e.'': opened) at
depolarized In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is esse ...
membrane potentials and this is the source of the "voltage-gated"
epithet An epithet (, ), also byname, is a descriptive term (word or phrase) known for accompanying or occurring in place of a name and having entered common usage. It has various shades of meaning when applied to seemingly real or fictitious people, di ...
. The concentration of calcium (Ca2+ ions) is normally several thousand times higher outside the cell than inside. Activation of particular VGCCs allows a Ca2+ influx into the cell, which, depending on the cell type, results in activation of calcium-sensitive potassium channels, muscular contraction, excitation of neurons, up-regulation of
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
, or release of hormones or
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
s. VGCCs have been immunolocalized in the zona glomerulosa of normal and hyperplastic human
adrenal The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which ...
, as well as in
aldosterone Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a c ...
-producing
adenoma An adenoma is a benign tumor of epithelial tissue with glandular origin, glandular characteristics, or both. Adenomas can grow from many glandular organs, including the adrenal glands, pituitary gland, thyroid, prostate, and others. Some adenom ...
s (APA), and in the latter T-type VGCCs correlated with plasma aldosterone levels of patients. Excessive activation of VGCCs is a major component of excitotoxicity, as severely elevated levels of intracellular calcium activates enzymes which, at high enough levels, can degrade essential cellular structures.


Structure

Voltage-gated calcium channels are formed as a complex of several different subunits: α1, α2δ, β1-4, and γ. The α1 subunit forms the ion-conducting pore while the associated subunits have several functions including modulation of gating.


Channel subunits

There are several different kinds of high-voltage-gated calcium channels (HVGCCs). They are structurally homologous among varying types; they are all similar, but not structurally identical. In the laboratory, it is possible to tell them apart by studying their physiological roles and/or inhibition by specific toxins. High-voltage-gated calcium channels include the
neural In Biology, biology, the nervous system is the Complex system, highly complex part of an animal that coordinates its Behavior, actions and Sense, sensory information by transmitting action potential, signals to and from different parts of its ...
N-type channel blocked by ω- conotoxin GVIA, the R-type channel (R stands for Resistant to the other blockers and toxins, except SNX-482) involved in poorly defined processes in the brain, the closely related P/Q-type channel blocked by ω- agatoxins, and the dihydropyridine-sensitive L-type channels responsible for excitation-contraction coupling of
skeletal A skeleton is the structural frame that supports the body of an animal. There are several types of skeletons, including the exoskeleton, which is the stable outer shell of an organism, the endoskeleton, which forms the support structure inside ...
, smooth, and cardiac muscle and for hormone secretion in endocrine cells. Reference for the table can be found at Dunlap, Luebke and Turner (1995).


α1 Subunit

The α1 subunit pore (~190 kDa in molecular mass) is the primary subunit necessary for channel functioning in the HVGCC, and consists of the characteristic four homologous I–IV domains containing six transmembrane α-helices each. The α1 subunit forms the Ca2+ selective pore, which contains voltage-sensing machinery and the drug/toxin-binding sites. A total of ten α1 subunits that have been identified in humans: α1 subunit contains 4 homologous domains (labeled I–IV), each containing 6 transmembrane helices (S1–S6). This arrangement is analogous to a homo-tetramer formed by single-domain subunits of voltage-gated potassium channels (that also each contain 6 TM helices). The 4-domain architecture (and several key regulatory sites, such as the EF hand and IQ domain at the C-terminus) is also shared by the voltage gated sodium channels, which are thought to be evolutionarily related to VGCCs. The transmembrane helices from the 4 domains line up to form the channel proper; S5 and S6 helices are thought to line the inner pore surface, while S1–4 helices have roles in gating and voltage sensing (S4 in particular). VGCCs are subject to rapid inactivation, which is thought to consist of 2 components: voltage-gated (VGI) and calcium-gated (CGI). These are distinguished by using either Ba2+ or Ca2+ as the charge carrier in the external recording solution (''in vitro''). The CGI component is attributed to the binding of the Ca2+-binding signaling protein
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the bind ...
(CaM) to at least 1 site on the channel, as Ca2+-null CaM mutants abolish CGI in L-type channels. Not all channels exhibit the same regulatory properties and the specific details of these mechanisms are still largely unknown.


α2δ Subunit

The α2δ gene forms two subunits: α2 and δ (which are both the product of the same gene). They are linked to each other via a disulfide bond and have a combined molecular weight of 170 kDa. The α2 is the extracellular glycosylated subunit that interacts the most with the α1 subunit. The δ subunit has a single transmembrane region with a short intracellular portion, which serves to anchor the protein in the plasma membrane. There are 4 α2δ genes: *
CACNA2D1 Voltage-dependent calcium channel subunit alpha-2/delta-1 is a protein that in humans is encoded by the ''CACNA2D1'' gene. This gene encodes a member of the alpha-2/delta subunit family, a protein in the voltage-dependent calcium channel complex. ...
(), *
CACNA2D2 Voltage-dependent calcium channel subunit alpha2delta-2 is a protein that in humans is encoded by the ''CACNA2D2'' gene. This gene encodes a member of the alpha-2/delta subunit family, a protein in the voltage-dependent calcium channel complex. Ca ...
(), * (), * (). Co-expression of the α2δ enhances the level of expression of the α1 subunit and causes an increase in current amplitude, faster activation and inactivation kinetics and a hyperpolarizing shift in the voltage dependence of inactivation. Some of these effects are observed in the absence of the beta subunit, whereas, in other cases, the co-expression of beta is required. The α2δ-1 and α2δ-2 subunits are the binding site for gabapentinoids. This drug class includes two anticonvulsant drugs, gabapentin (Neurontin) and pregabalin (Lyrica), that also find use in treating chronic neuropathic pain. The α2δ subunit is also a binding site of the central depressant and anxiolytic
phenibut Phenibut, sold under the brand names Anvifen, Fenibut, and Noofen among others, is a central nervous system depressant with anxiolytic effects, and is used to treat anxiety, insomnia, and for a variety of other indications. It is usually taken ...
, in addition to actions at other targets.


β Subunit

The intracellular β subunit (55 kDa) is an intracellular MAGUK-like protein (Membrane-Associated Guanylate Kinase) containing a guanylate kinase (GK) domain and an SH3 (src homology 3) domain. The guanylate kinase domain of the β subunit binds to the α1 subunit I-II cytoplasmic loop and regulates HVGCC activity. There are four known genes for the β subunit: * CACNB1 (), * CACNB2 (), *
CACNB3 Voltage-dependent L-type calcium channel subunit beta-3 is a protein that in humans is encoded by the ''CACNB3'' gene. See also * Voltage-dependent calcium channel Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium ...
(), *
CACNB4 Voltage-dependent L-type calcium channel subunit beta-4 is a protein that in humans is encoded by the ''CACNB4'' gene. Function This gene encodes a member of the beta subunit family, a protein in the voltage-dependent calcium channel complex. ...
(). It is hypothesized that the cytosolic β subunit has a major role in stabilizing the final α1 subunit conformation and delivering it to the cell membrane by its ability to mask an
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
retention signal in the α1 subunit. The endoplasmic retention brake is contained in the I–II loop in the α1 subunit that becomes masked when the β subunit binds. Therefore, the β subunit functions initially to regulate the current density by controlling the amount of α1 subunit expressed at the cell membrane. In addition to this trafficking role, the β subunit has the added important functions of regulating the activation and inactivation kinetics, and hyperpolarizing the voltage-dependence for activation of the α1 subunit pore, so that more current passes for smaller depolarizations. The β subunit has effects on the kinetics of the cardiac α1C in '' Xenopus laevis'' oocytes co-expressed with β subunits. The β subunit acts as an important modulator of channel electrophysiological properties. Until very recently, the interaction between a highly conserved 18- amino acid region on the α1 subunit intracellular linker between domains I and II (the Alpha Interaction Domain, AID) and a region on the GK domain of the β subunit (Alpha Interaction Domain Binding Pocket) was thought to be solely responsible for the regulatory effects by the β subunit. Recently, it has been discovered that the SH3 domain of the β subunit also gives added regulatory effects on channel function, opening the possibility of the β subunit having multiple regulatory interactions with the α1 subunit pore. Furthermore, the AID sequence does not appear to contain an endoplasmic reticulum retention signal, and this may be located in other regions of the I–II α1 subunit linker.


γ Subunit

The γ1 subunit is known to be associated with skeletal muscle VGCC complexes, but the evidence is inconclusive regarding other subtypes of calcium channel. The γ1 subunit glycoprotein (33 kDa) is composed of four transmembrane spanning helices. The γ1 subunit does not affect trafficking, and, for the most part, is not required to regulate the channel complex. However, γ2, γ3, γ4 and γ8 are also associated with AMPA glutamate receptors. There are 8 genes for gamma subunits: * γ1 (), * γ2 (), * γ3 (), * γ4 (), * (), * (), * (), and * ().


Muscle physiology

When a
smooth muscle Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations (''bands'' or ''stripes''). It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit mus ...
cell is depolarized, it causes opening of the voltage-gated (L-type) calcium channels. Depolarization may be brought about by stretching of the cell, agonist-binding its G protein-coupled receptor ( GPCR), or
autonomic nervous system The autonomic nervous system (ANS), formerly referred to as the vegetative nervous system, is a division of the peripheral nervous system that supplies viscera, internal organs, smooth muscle and glands. The autonomic nervous system is a control ...
stimulation. Opening of the L-type calcium channel causes influx of extracellular Ca2+, which then binds
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the bind ...
. The activated calmodulin molecule activates
myosin light-chain kinase Myosin light-chain kinase also known as MYLK or MLCK is a serine/threonine-specific protein kinase that phosphorylates a specific myosin light chain, namely, the regulatory light chain of myosin II. General structural features While there ar ...
(MLCK), which phosphorylates the
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin ...
in
thick filament Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act toget ...
s. Phosphorylated myosin is able to form crossbridges with actin
thin filament Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act together ...
s, and the smooth muscle fiber (i.e., cell) contracts via the sliding filament mechanism. (See reference for an illustration of the signaling cascade involving L-type calcium channels in smooth muscle). L-type calcium channels are also enriched in the t-tubules of striated muscle cells, i.e., skeletal and cardiac
myofiber A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscle ...
s. When these cells are depolarized, the L-type calcium channels open as in smooth muscle. In skeletal muscle, the actual opening of the channel, which is mechanically gated to a calcium-release channel (a.k.a.
ryanodine receptor Ryanodine receptors (RyR for short) form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissu ...
, or RYR) in the sarcoplasmic reticulum (SR), causes opening of the RYR. In cardiac muscle, opening of the L-type calcium channel permits influx of calcium into the cell. The calcium binds to the calcium release channels (RYRs) in the SR, opening them; this phenomenon is called " calcium-induced calcium release", or CICR. However the RYRs are opened, either through mechanical-gating or CICR, Ca2+ is released from the SR and is able to bind to troponin C on the actin filaments. The muscles then contract through the sliding filament mechanism, causing shortening of sarcomeres and muscle contraction.


Changes in expression during development

Early in development, there is a high amount of expression of T-type calcium channels. During maturation of the nervous system, the expression of N or L-type currents becomes more prominent. As a result, mature neurons express more calcium channels that will only be activated when the cell is significantly
depolarized In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is esse ...
. The different expression levels of low-voltage activated (LVA) and high-voltage activated (HVA) channels can also play an important role in
neuronal differentiation A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. No ...
. In developing Xenopus
spinal neuron A spinal neuron is a neuron in the spinal cord. Some spinal neurons are heteromeric A heteromer is something that consists of different parts; the antonym of homomeric. Examples are: Biology * Spinal neurons that pass over to the opposite side ...
s LVA calcium channels carry a spontaneous calcium transient that may be necessary for the neuron to adopt a
GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A ...
phenotype as well as process outgrowth.


Clinical significance

Voltage-gated calcium channels antibodies are associated with Lambert-Eaton myasthenic syndrome and have also been implicated in
paraneoplastic cerebellar degeneration Paraneoplastic cerebellar degeneration (PCD) is a paraneoplastic syndrome associated with a broad variety of tumors including lung cancer, ovarian cancer, breast cancer, Hodgkin’s lymphoma and others. PCD is a rare condition that occurs in less ...
. Voltage-gated calcium channels are also associated with malignant hyperthermia and
Timothy syndrome Timothy syndrome is a rare autosomal-dominant disorder characterized by physical malformations, as well as neurological and developmental defects, including heart QT-prolongation, heart arrhythmias, structural heart defects, syndactyly (webbing ...
. Mutations of the ''CACNA1C'' gene, with a single-nucleotide polymorphism in the third intron of the Cav1.2 gene, are associated with a variant of
long QT syndrome Long QT syndrome (LQTS) is a condition affecting repolarization (relaxing) of the heart after a heartbeat, giving rise to an abnormally lengthy QT interval. It results in an increased risk of an irregular heartbeat which can result in fainting, d ...
called Timothy's syndrome and also with
Brugada syndrome Brugada syndrome (BrS) is a genetic disorder in which the electrical activity of the heart is abnormal due to channelopathy. It increases the risk of abnormal heart rhythms and sudden cardiac death. Those affected may have episodes of syncope ...
. Large-scale genetic analyses have shown the possibility that ''CACNA1C'' is associated with bipolar disorder * and subsequently also with schizophrenia. Also, a ''CACNA1C'' risk allele has been associated to a disruption in brain connectivity in patients with bipolar disorder, while not or only to a minor degree, in their unaffected relatives or healthy controls.


See also

* Glutamate receptors *
Inositol triphosphate receptor Inositol trisphosphate receptor (InsP3R) is a membrane glycoprotein complex acting as a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiol ...
*
Ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
s *
NMDA receptor The ''N''-methyl-D-aspartate receptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other two being AMPA rece ...
s


References


External links

* * {{channel blockers Electrophysiology Membrane biology Integral membrane proteins Voltage-gated ion channels Calcium channels