In
probability theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
and
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
giving the
covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables.
The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one ...
between each pair of elements of a given
random vector
In probability, and statistics, a multivariate random variable or random vector is a list or vector of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge ...
.
Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the
and
directions contain all of the necessary information; a
matrix would be necessary to fully characterize the two-dimensional variation.
Any
covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables.
The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one ...
matrix is
symmetric
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
and
positive semi-definite and its main diagonal contains
variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
s (i.e., the covariance of each element with itself).
The covariance matrix of a random vector
is typically denoted by
,
or
.
Definition
Throughout this article, boldfaced unsubscripted
and
are used to refer to random vectors, and Roman subscripted
and
are used to refer to scalar random variables.
If the entries in the
column vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some , c ...
are
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
s, each with finite
variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
and
expected value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
, then the covariance matrix
is the matrix whose
entry is the
covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables.
The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one ...
where the operator
denotes the expected value (mean) of its argument.
Conflicting nomenclatures and notations
Nomenclatures differ. Some statisticians, following the probabilist
William Feller
William "Vilim" Feller (July 7, 1906 – January 14, 1970), born Vilibald Srećko Feller, was a Croatian–American mathematician specializing in probability theory.
Early life and education
Feller was born in Zagreb to Ida Oemichen-Perc, a Cro ...
in his two-volume book ''An Introduction to Probability Theory and Its Applications'',
call the matrix
the variance of the random vector
, because it is the natural generalization to higher dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances between the scalar components of the vector
.
Both forms are quite standard, and there is no ambiguity between them. The matrix
is also often called the variance-covariance matrix, since the diagonal terms are in fact variances.
By comparison, the notation for the
cross-covariance matrix
In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the ''i'', ''j'' position is the covariance between the ''i''-th element of a random vector and ''j''-th element of another random vector.
When the two r ...
''between'' two vectors is
Properties
Relation to the autocorrelation matrix
The auto-covariance matrix
is related to the autocorrelation matrix
by
where the autocorrelation matrix is defined as
.
Relation to the correlation matrix
An entity closely related to the covariance matrix is the matrix of
Pearson product-moment correlation coefficient
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviation ...
s between each of the random variables in the random vector
, which can be written as
where
is the matrix of the diagonal elements of
(i.e., a
diagonal matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagon ...
of the variances of
for
).
Equivalently, the correlation matrix can be seen as the covariance matrix of the
standardized random variables for
.
Each element on the principal diagonal of a correlation matrix is the correlation of a random variable with itself, which always equals 1. Each
off-diagonal element
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagona ...
is between −1 and +1 inclusive.
Inverse of the covariance matrix
The
inverse of this matrix,
, if it exists, is the inverse covariance matrix (or inverse concentration matrix), also known as the ''
precision matrix
In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, P = \Sigma^.
For univariate distributions, the precision matrix degenerates into a scalar precision, defined as the ...
'' (or ''concentration matrix'').
Just as the covariance matrix can be written as the rescaling of a correlation matrix by the marginal variances:
So, using the idea of
partial correlation
In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two ...
, and partial variance, the inverse covariance matrix can be expressed analogously:
This duality motivates a number of other dualities between marginalizing and conditioning for Gaussian random variables.
Basic properties
For
and
, where
is an
-dimensional random variable, the following basic properties apply:
#
#
is
positive-semidefinite, i.e.
#
is
symmetric
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
, i.e.
# For any constant (i.e. non-random)
matrix
and constant
vector
, one has
# If
is another random vector with the same dimension as
, then
where
is the
cross-covariance matrix
In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the ''i'', ''j'' position is the covariance between the ''i''-th element of a random vector and ''j''-th element of another random vector.
When the two r ...
of
and
.
Block matrices
The joint mean
and
joint covariance matrix of
and
can be written in block form
where
,
and
.
and
can be identified as the variance matrices of the
marginal distribution
In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variable ...
s for
and
respectively.
If
and
are
jointly normally distributed,
then the
conditional distribution
Conditional (if then) may refer to:
* Causal conditional, if X then Y, where X is a cause of Y
*Conditional probability, the probability of an event A given that another event B
* Conditional proof, in logic: a proof that asserts a conditional, ...
for
given
is given by
defined by
conditional mean
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on ...
and
conditional variance
In probability theory and statistics, a conditional variance is the variance of a random variable given the value(s) of one or more other variables.
Particularly in econometrics, the conditional variance is also known as the scedastic function or s ...
The matrix
is known as the matrix of
regression coefficients, while in linear algebra
is the
Schur complement
The Schur complement is a key tool in the fields of linear algebra, the theory of matrices, numerical analysis, and statistics.
It is defined for a block matrix. Suppose ''p'', ''q'' are nonnegative integers such that ''p + q > 0'', and suppose ...
of
in
.
The matrix of regression coefficients may often be given in transpose form,
, suitable for post-multiplying a row vector of explanatory variables
rather than pre-multiplying a column vector
. In this form they correspond to the coefficients obtained by inverting the matrix of the
normal equations of
ordinary least squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship ...
(OLS).
Partial covariance matrix
A covariance matrix with all non-zero elements tells us that all the individual random variables are interrelated. This means that the variables are not only directly correlated, but also correlated via other variables indirectly. Often such indirect,
common-mode correlations are trivial and uninteresting. They can be suppressed by calculating the partial covariance matrix, that is the part of covariance matrix that shows only the interesting part of correlations.
If two vectors of random variables
and
are correlated via another vector
, the latter correlations are suppressed in a matrix
[W J Krzanowski "Principles of Multivariate Analysis" (Oxford University Press, New York, 1988), Chap. 14.4; K V Mardia, J T Kent and J M Bibby "Multivariate Analysis (Academic Press, London, 1997), Chap. 6.5.3; T W Anderson "An Introduction to Multivariate Statistical Analysis" (Wiley, New York, 2003), 3rd ed., Chaps. 2.5.1 and 4.3.1.]
The partial covariance matrix
is effectively the simple covariance matrix
as if the uninteresting random variables
were held constant.
Standard deviation matrix
The standard deviation matrix
is the extension of the standard deviation to multiple dimensions. It is the symmetric
square root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
of the covariance matrix
.
Covariance matrix as a parameter of a distribution
If a column vector
of
possibly correlated random variables is
jointly normally distributed, or more generally
elliptically distributed, then its
probability density function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
can be expressed in terms of the covariance matrix
as follows
where
and
is the
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of
.
Covariance matrix as a linear operator
Applied to one vector, the covariance matrix maps a linear combination c of the random variables X onto a vector of covariances with those variables:
. Treated as a
bilinear form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ...
, it yields the covariance between the two linear combinations:
. The variance of a linear combination is then
, its covariance with itself.
Similarly, the (pseudo-)inverse covariance matrix provides an inner product
, which induces the
Mahalanobis distance
The Mahalanobis distance is a distance measure, measure of the distance between a point P and a probability distribution D, introduced by Prasanta Chandra Mahalanobis, P. C. Mahalanobis in 1936. The mathematical details of Mahalanobis distance ...
, a measure of the "unlikelihood" of ''c''.
Which matrices are covariance matrices?
From basic property 4. above, let
be a
real-valued vector, then
which must always be nonnegative, since it is the
variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
of a real-valued random variable, so a covariance matrix is always a
positive-semidefinite matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number \mathbf^\mathsf M \mathbf is positive for every nonzero real column vector \mathbf, where \mathbf^\mathsf is the row vector transpose of \mathbf.
Mo ...
.
The above argument can be expanded as follows:
where the last inequality follows from the observation that
is a scalar.
Conversely, every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose
is a
symmetric positive-semidefinite matrix. From the finite-dimensional case of the
spectral theorem
In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involvin ...
, it follows that
has a nonnegative symmetric
square root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
, which can be denoted by M
1/2. Let
be any
column vector-valued random variable whose covariance matrix is the
identity matrix. Then
Complex random vectors
The
variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
of a
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
''scalar-valued'' random variable with expected value
is conventionally defined using
complex conjugation
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
:
where the complex conjugate of a complex number
is denoted
; thus the variance of a complex random variable is a real number.
If
is a column vector of complex-valued random variables, then the
conjugate transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
is formed by ''both'' transposing and conjugating. In the following expression, the product of a vector with its conjugate transpose results in a square matrix called the covariance matrix, as its expectation:
The matrix so obtained will be
Hermitian {{Short description, none
Numerous things are named after the French mathematician Charles Hermite (1822–1901):
Hermite
* Cubic Hermite spline, a type of third-degree spline
* Gauss–Hermite quadrature, an extension of Gaussian quadrature me ...
positive-semidefinite, with real numbers in the main diagonal and complex numbers off-diagonal.
;Properties
* The covariance matrix is a
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
, i.e.
.
[
* The diagonal elements of the covariance matrix are real.][
]
Pseudo-covariance matrix
For complex random vectors, another kind of second central moment, the pseudo-covariance matrix (also called relation matrix) is defined as follows:
In contrast to the covariance matrix defined above, Hermitian transposition gets replaced by transposition in the definition.
Its diagonal elements may be complex valued; it is a complex symmetric matrix.
Estimation
If and are centered data matrices of dimension and respectively, i.e. with ''n'' columns of observations of ''p'' and ''q'' rows of variables, from which the row means have been subtracted, then, if the row means were estimated from the data, sample covariance matrices and can be defined to be
or, if the row means were known a priori,
These empirical sample covariance matrices are the most straightforward and most often used estimators for the covariance matrices, but other estimators also exist, including regularised or shrinkage estimators, which may have better properties.
Applications
The covariance matrix is a useful tool in many different areas. From it a transformation matrix
In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then there exists an m \times n matrix A, called the transfo ...
can be derived, called a whitening transformation
A whitening transformation or sphering transformation is a linear transformation that transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix, meaning that they ar ...
, that allows one to completely decorrelate the data or, from a different point of view, to find an optimal basis for representing the data in a compact way (see Rayleigh quotient
In mathematics, the Rayleigh quotient () for a given complex Hermitian matrix M and nonzero vector ''x'' is defined as:R(M,x) = .For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugat ...
for a formal proof and additional properties of covariance matrices).
This is called principal component analysis
Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.
The data is linearly transformed onto a new coordinate system such that th ...
(PCA) and the Karhunen–Loève transform (KL-transform).
The covariance matrix plays a key role in financial economics
Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on ''both sides'' of a trade".William F. Sharpe"Financial Economics", in
Its co ...
, especially in portfolio theory
Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of Diversificatio ...
and its mutual fund separation theorem In Modern portfolio theory, portfolio theory, a mutual fund separation theorem, mutual fund theorem, or separation theorem is a theorem stating that, under certain conditions, any investor's optimal portfolio can be constructed by holding each of ce ...
and in the capital asset pricing model
In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a Diversification (finance), well-diversified Portfolio (f ...
. The matrix of covariances among various assets' returns is used to determine, under certain assumptions, the relative amounts of different assets that investors should (in a normative analysis) or are predicted to (in a positive analysis) choose to hold in a context of diversification.
Use in optimization
The evolution strategy
Evolution strategy (ES) from computer science is a subclass of evolutionary algorithms, which serves as an optimization (mathematics), optimization technique. It uses the major genetic operators mutation (evolutionary algorithm), mutation, recomb ...
, a particular family of Randomized Search Heuristics, fundamentally relies on a covariance matrix in its mechanism. The characteristic mutation operator draws the update step from a multivariate normal distribution using an evolving covariance matrix. There is a formal proof that the evolution strategy
Evolution strategy (ES) from computer science is a subclass of evolutionary algorithms, which serves as an optimization (mathematics), optimization technique. It uses the major genetic operators mutation (evolutionary algorithm), mutation, recomb ...
's covariance matrix adapts to the inverse of the Hessian matrix
In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued Function (mathematics), function, or scalar field. It describes the local curvature of a functio ...
of the search landscape, up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation "
* if and are related by , that is,
* if holds, that is,
* if the equivalence classes of and with respect to are equal.
This figure of speech ...
a scalar factor and small random fluctuations (proven for a single-parent strategy and a static model, as the population size increases, relying on the quadratic approximation).
Intuitively, this result is supported by the rationale that the optimal covariance distribution can offer mutation steps whose equidensity probability contours match the level sets of the landscape, and so they maximize the progress rate.
Covariance mapping
In covariance mapping the values of the or matrix are plotted as a 2-dimensional map. When vectors and are discrete random function
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stoc ...
s, the map shows statistical relations between different regions of the random functions. Statistically independent regions of the functions show up on the map as zero-level flatland, while positive or negative correlations show up, respectively, as hills or valleys.
In practice the column vectors , and are acquired experimentally as rows of samples, e.g.
where is the ''i''-th discrete value in sample ''j'' of the random function . The expected values needed in the covariance formula are estimated using the sample mean
The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables.
The sample mean is the average value (or me ...
, e.g.
and the covariance matrix is estimated by the sample covariance
The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables.
The sample mean is the average value (or me ...
matrix
where the angular brackets denote sample averaging as before except that the Bessel's correction
In statistics, Bessel's correction is the use of ''n'' − 1 instead of ''n'' in the formula for the sample variance and sample standard deviation, where ''n'' is the number of observations in a sample. This method corrects the bias in ...
should be made to avoid bias
Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individ ...
. Using this estimation the partial covariance matrix can be calculated as
where the backslash denotes the left matrix division operator, which bypasses the requirement to invert a matrix and is available in some computational packages such as Matlab
MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementat ...
.[L J Frasinski "Covariance mapping techniques" ''J. Phys. B: At. Mol. Opt. Phys.'' 49 152004 (2016), ]
Fig. 1 illustrates how a partial covariance map is constructed on an example of an experiment performed at the FLASH
Flash, flashes, or FLASH may refer to:
Arts, entertainment, and media
Fictional aliases
* The Flash, several DC Comics superheroes with super speed:
** Flash (Jay Garrick)
** Barry Allen
** Wally West, the first Kid Flash and third adult Flash ...
free-electron laser
A free-electron laser (FEL) is a fourth generation light source producing extremely brilliant and short pulses of radiation. An FEL functions much as a laser but employs relativistic electrons as a active laser medium, gain medium instead of using ...
in Hamburg.[O Kornilov, M Eckstein, M Rosenblatt, C P Schulz, K Motomura, A Rouzée, J Klei, L Foucar, M Siano, A Lübcke, F. Schapper, P Johnsson, D M P Holland, T Schlatholter, T Marchenko, S Düsterer, K Ueda, M J J Vrakking and L J Frasinski "Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance" ''J. Phys. B: At. Mol. Opt. Phys.'' 46 164028 (2013), ] The random function is the time-of-flight
Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a w ...
spectrum of ions from a Coulomb explosion of nitrogen molecules multiply ionised by a laser pulse. Since only a few hundreds of molecules are ionised at each laser pulse, the single-shot spectra are highly fluctuating. However, collecting typically such spectra, , and averaging them over produces a smooth spectrum , which is shown in red at the bottom of Fig. 1. The average spectrum reveals several nitrogen ions in a form of peaks broadened by their kinetic energy, but to find the correlations between the ionisation stages and the ion momenta requires calculating a covariance map.
In the example of Fig. 1 spectra and are the same, except that the range of the time-of-flight differs. Panel a shows , panel b shows and panel c shows their difference, which is (note a change in the colour scale). Unfortunately, this map is overwhelmed by uninteresting, common-mode correlations induced by laser intensity fluctuating from shot to shot. To suppress such correlations the laser intensity is recorded at every shot, put into and is calculated as panels d and e show. The suppression of the uninteresting correlations is, however, imperfect because there are other sources of common-mode fluctuations than the laser intensity and in principle all these sources should be monitored in vector . Yet in practice it is often sufficient to overcompensate the partial covariance correction as panel f shows, where interesting correlations of ion momenta are now clearly visible as straight lines centred on ionisation stages of atomic nitrogen.
Two-dimensional infrared spectroscopy
Two-dimensional infrared spectroscopy employs correlation analysis to obtain 2D spectra of the condensed phase. There are two versions of this analysis: synchronous
Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are said to be synchrono ...
and asynchronous
Asynchrony is any dynamic far from synchronization. If and as parts of an asynchronous system become more synchronized, those parts or even the whole system can be said to be in sync.
Asynchrony or asynchronous may refer to:
Electronics and com ...
. Mathematically, the former is expressed in terms of the sample covariance matrix and the technique is equivalent to covariance mapping.
See also
* Covariance function
In probability theory and statistics, the covariance function describes how much two random variables change together (their ''covariance'') with varying spatial or temporal separation. For a random field or stochastic process ''Z''(''x'') on a dom ...
* Eigenvalue decomposition
In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the mat ...
* Gramian matrix
In linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors v_1,\dots, v_n in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product G_ = \left\langle v_i, v_j \right\ ...
* Lewandowski-Kurowicka-Joe distribution
* Multivariate statistics
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., '' multivariate random variables''.
Multivariate statistics concerns understanding the differ ...
* Principal components
* Quadratic form (statistics)
In multivariate statistics, if \varepsilon is a vector of n random variables, and \Lambda is an n-dimensional symmetric matrix, then the scalar quantity \varepsilon^T\Lambda\varepsilon is known as a quadratic form in \varepsilon.
Expectation
It c ...
References
Further reading
*
*
Covariance Matrix Explained With Pictures
, an easy way to visualize covariance matrices!
*
*
{{DEFAULTSORT:Covariance Matrix
Covariance and correlation
Matrices (mathematics)
Summary statistics