HOME

TheInfoList



OR:

A variable-sweep wing, colloquially known as a "swing wing", is an
airplane An airplane or aeroplane (informally plane) is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spe ...
wing, or set of wings, that may be swept back and then returned to its original straight position during flight. It allows the aircraft's shape to be modified in flight, and is therefore an example of a variable-geometry aircraft. A straight wing is most efficient for low-speed flight, but for an aircraft designed for transonic or supersonic flight it is essential that the wing be swept. Most aircraft that travel at those speeds usually have wings (either swept wing or delta wing) with a fixed sweep angle. These are simple and efficient wing designs for high speed flight, but there are performance tradeoffs. One is that the stalling speed is increased, necessitating long runways (unless complex high-lift wing devices are built in). Another is that the aircraft's fuel consumption during subsonic cruise is higher than that of an unswept wing. These tradeoffs are particularly acute for naval carrier-based aircraft. A variable-sweep wing allows the pilot to use the optimum sweep angle for the aircraft's current speed, slow or fast. The more efficient sweep angles available offset the weight and volume penalties imposed by the wing's mechanical sweep mechanisms. Its greater complexity and cost make it practical mostly for
military aircraft A military aircraft is any fixed-wing or rotary-wing aircraft that is operated by a legal or insurrectionary armed service of any type. Military aircraft can be either combat or non-combat: * Combat aircraft are designed to destroy enemy equi ...
. A number of aircraft, both experimental and production, were introduced between the 1940s and the 1970s. The majority of production aircraft to be furnished with variable-sweep wings have been strike-oriented aircraft, such as the Mikoyan-Gurevich MiG-27, Tupolev Tu-22M, and Panavia Tornado. The configuration was also used for a few fighter/ interceptor aircraft, including the Grumman F-14 Tomcat and the Panavia Tornado ADV. From the 1980s onwards, the development of such aircraft were curtailed by advances in flight control technology and structural materials which have allowed designers to closely tailor the aerodynamics and structure of aircraft, removing the need for variable sweep angle to achieve the required performance; instead, wings are given computer-controlled flaps on both leading and trailing edges that increase or decrease the camber or
chord Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
of the wing automatically to adjust to the flight regime; this technique is another form of ''variable geometry''.


Characteristics


Variable sweep

A straight, unswept wing experiences high drag as it approaches the speed of sound, due to the progressive buildup of sonic shockwaves. Sweeping the wing at an angle, whether backwards or forwards, delays their onset and reduces their overall drag. However it also reduces the overall span of a given wing, leading to poor cruise efficiency and high takeoff and landing speeds. A fixed wing must be a compromise between these two requirements. Varying the sweep in flight allows it to be optimised for each phase of flight, offering a smaller aircraft with higher performance. However it has disadvantages which must be allowed for. As the wing sweeps its centre of lift moves with it. Some mechanism, such as a sliding wing root or larger tail stabiliser, must be incorporated to trim out the changes and maintain level flight. The added weight of the sweep and trim mechanisms eat into the performance gains, while their complexity adds to cost and maintenance. By moving the wing pivots outboard and only sweeping part of the wing, the trim changes are reduced, but so too is the variation in span and accompanying operational flexibility.


Wing controlled aerodyne

British engineer Barnes Wallis developed a radical aircraft configuration for high-speed flight, which he regarded as distinct from the conventional fixed-wing aeroplane and called it the wing controlled aerodyne. His previous work on the stability of airships had impressed on him the high control forces that could be exerted on the body of an aircraft, through very small deflections. He conceived of a simple ichthyoid (fish-like) fuselage with a variable wing. No other control surfaces were needed. Subtle movements of the wings were able to induce the small deflections which controlled the direction of flight, while trim was maintained by adjusting the angle of sweep to compensate for the varying position of the centre of lift at different speeds.Wood, 1975. For supersonic flight a delta-planform lifting body is more suitable than a simple ichthyoid. A conflict also arises between the wing sweep angle necessary for trim and the optimal angle for supersonic cruise. Wallis resolved this by moving mass, typically the engines, out to the wing tips and swivelling them as the wing swept in order to maintain the thrust line. In the asymmetric engine-out condition, the remaining engines could be swivelled to divert the thrust line closer to the centre of pressure and reduce the asymmetry to manageable levels.


Asymmetric sweep

It is not necessary to sweep the port and starboard wings in the same sense - one can be swept back and the other forward, as in the oblique wing. Varying the sweep asymmetrically by small amounts was also fundamental to the principle of the wing controlled aerodyne.


History


Origins

The earliest use of variable sweep was to trim the aeroplane for level flight. The Westland-Hill Pterodactyl IV of 1931 was a tailless design whose lightly swept wings could vary their sweep through a small angle during flight. This allowed longitudinal trim in the absence of a separate horizontal stabiliser. The concept would later be incorporated in Barnes Wallis's wing-controlled aerodyne. During the
Second World War World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
, researchers in
Nazi Germany Nazi Germany (lit. "National Socialist State"), ' (lit. "Nazi State") for short; also ' (lit. "National Socialist Germany") (officially known as the German Reich from 1933 until 1943, and the Greater German Reich from 1943 to 1945) was ...
discovered the advantages of the swept wing for transonic flight, and also its disadvantages at lower speeds. The Messerschmitt Me P.1101 was an experimental
jet Jet, Jets, or The Jet(s) may refer to: Aerospace * Jet aircraft, an aircraft propelled by jet engines ** Jet airliner ** Jet engine ** Jet fuel * Jet Airways, an Indian airline * Wind Jet (ICAO: JET), an Italian airline * Journey to Enceladus a ...
fighter which was, in part, developed to investigate the benefits of varying wing sweep.Christopher 2013, pp. 157–160. Its sweep angle mechanism, which could only be adjusted on the ground between three separate positions of 30, 40, and 45 degrees, was intended for testing only, and was unsuitable for combat operations. However, by Victory in Europe Day, the sole prototype was only 80 percent complete.Hirschel, Prem and Madelung 2012, p. 336.Ford 2013, p. 224.


Development

Following the end of the conflict, the partially complete P.1101 was recovered and transported to the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., federal district, five ma ...
, where it was studied in depth by Bell Aircraft. However, due to a lack of documentation as well as some structural damage sustained, Bell decided against completing the aircraft itself. Instead, a close copy, known as the Bell X-5, was constructed with wings that enabled the sweep angle to be altered mid-flight. As the wing swept back, the root also slid forwards, maintaining the centre of lift in a constant position. A variable-sweep wing of this sliding type was flown on the prototype Grumman XF10F Jaguar in 1952. However, flight testing of the F10F proved to be unacceptable, albeit for other factors such as a lack of engine power and considerable controllability issues.Winchester 2005, p. 295.DeMeis 1976, p. 32. During the late 1940s, British engineer
L. E. Baynes Leslie Everett Baynes, AFRAeS (23 March 1902 – 13 March 1989) was an English aeronautical engineer. Early life Born at Barnes, Surrey, on 23 March 1902 the son of James and Florence Baynes. Baynes was educated at Gresham's School, Norfolk, le ...
started studying the variable sweep wing. He devised a method of varying the tail geometry as well in order to stabilise the centre of lift; no sliding mechanism was necessary, instead, the wing wake interacted with the variable tail to effect the necessary trim changes. During 1949 and 1951, Baynes filed
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an sufficiency of disclosure, enabling disclo ...
applications associated with this work. While the design reached the physical modelling stage and was subject to a complete round of wind tunnel tests, the British Government failed to provide financial backing for the work, allegedly due to budget constraints at the time. Independently from Baynes, British engineer Barnes Wallis was also developing a more radical variable-geometry concept, which he called the wing controlled aerodyne, to maximise the economy of high-speed flight. His first study was the Wild Goose project. Subsequently, Barnes devised the Swallow, a blended wing tailless aircraft, which was envisioned to be capable of making return flights between Europe and Australia within ten hours. Later on, the Swallow was increasingly viewed as a potential supersonic successor to the subsonic Vickers Valiant, one of the RAF's V bombers. During the 1950s, several modes of the Swallow were subjected to promising tests, including a six-foot scale model, at speeds of up to Mach 2. However, in 1957, British government decided to withdraw backing from many aeronautical programs, including Wallis' work.Wood 1975, pp. 189-191. Despite this lack of backing, the Swallow attracted international attention for some time. During late 1958, research efforts were temporarily revived through cooperation with the Mutual Weapons Development Programme of
NATO The North Atlantic Treaty Organization (NATO, ; french: Organisation du traité de l'Atlantique nord, ), also called the North Atlantic Alliance, is an intergovernmental military alliance between 30 member states – 28 European and two No ...
, under which all of Wallis' variable geometry research was shared with the Americans. According to aviation author James R. Hansen, American aerospace engineer John Stack was enthusiastic on the concept, as were numerous engineers at
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedi ...
; however, the
United States Department of Defense The United States Department of Defense (DoD, USDOD or DOD) is an executive branch department of the federal government charged with coordinating and supervising all agencies and functions of the government directly related to national secur ...
was opposed to committing any resources to the project. Wallis collaborated with NASA's Langley Laboratory on a design study for a variable-sweep fighter. Although it used the pivot mechanism he had developed, NASA also insisted on implementing a conventional horizontal stabiliser to ease the issues of trim and manoeuvrability. Although it was no longer the wing-controlled aerodyne that Wallis envisaged, it would prove a more practical solution than either his or Bell's. Swallow research led to several new configurations, including the adoption of a compact folding tail section and
canard Canard is French for duck, a type of aquatic bird. Canard may also refer to: Aviation *Canard (aeronautics), a small wing in front of an aircraft's main wing * Aviafiber Canard 2FL, a single seat recreational aircraft of canard design * Blé ...
s. Barnes' work inspired a number of further studies, including a wing controlled aerodyne in response to OR.346 for a supersonic STOL fighter-bomber, then as BAC two further submissions: the Type 583 to meet Naval ER.206 and Type 584 to meet NATO NBMR.3, both also being V/STOL requirements. In 1960, Maurice Brennan joined Folland Aircraft as its chief engineer and director; he soon set about harnessing his experience of variable-geometry wings.Wood 1975, p. 197. Accordingly, such a wing was combined with the firm's Folland Gnat light fighter for two different concepts – one tailless and one using with a conventional tail – for a multipurpose fighter/strike/trainer, designated as the Fo. 147. It had a unique mechanism for wing sweep that combined tracks on the fuselage sides and the underside of the wings, which was actuated by hydraulically-driven ball screws positioned at the wing's inner ends.Wood 1975, pp. 198. The wings could be swept from 20 degrees to 70 degrees; at the 70-degree position, longitudinal control was maintained by wing tip-mounted elevons, while this was provided by a retractable
canard Canard is French for duck, a type of aquatic bird. Canard may also refer to: Aviation *Canard (aeronautics), a small wing in front of an aircraft's main wing * Aviafiber Canard 2FL, a single seat recreational aircraft of canard design * Blé ...
arrangement when swept at the 20-degree position, using full auto- stabilisation. By providing trimming functionality via the canard, the necessity of a large tailplane was eliminated.Wood 1975, pp. 198–199. The Fo. 147 was claimed to have been capable of speeds in excess of Mach 2, being limited by the heat buildup generated by high speed flight.Wood 1975, p. 199. Ultimately, the concept would not be developed to the prototype stage while the RAF showed little interest the prospective variable geometry trainer.


Production

During the 1960s, the first programmes to produce mass production variable-sweep aircraft commenced. In the United States, such a configuration for the TFX (Tactical Fighter Experimental) program, which resulted in the development of the General Dynamics F-111, a sizable twin-engined aircraft intended to perform multiple roles. The F-111 is the first production aircraft to feature a variable-geometry wing and it, along with other systems such as terrain following radar and
turbofan The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the ''turbo'' portion refers to a gas turbine engine which achieves mechanical ...
engines outfitted with afterburners, were innovative technologies for the era.Logan 1998, p. 14.Miller 1982, pp. 17, 19. Despite this head start in the field, development of the F-111 was protracted; flight testing of the F-111A model only ended in 1973.Logan 1998, p. 32. During 1968, cracks were discovered in the F-111's wing attach points, the issue also has been attributed with the loss of an F-111 in the following year. Accordingly, the attach points were structurally redesigned and subject to intensive testing of both the design and manufacturing quality.Miller 1982, pp. 31, 47. The F-111B, intended for the
US Navy The United States Navy (USN) is the maritime service branch of the United States Armed Forces and one of the eight uniformed services of the United States. It is the largest and most powerful navy in the world, with the estimated tonnage ...
, was cancelled in 1968 due the aircraft's weight and performance issues, as well as its inadequacies for the service's fighter requirements. Several variants, such as the FB-111A strategic bomber model, featured elongated wings to give a greater range and load-carrying capability.Miller 1982, pp. 38–43. The F-111's wing featured pivoting pylons (two under each wing) which automatically adjusted to the sweep angle. Subsequent swing-wing aircraft, such as the Panavia Tornado and Sukhoi Su-24, would also be similarly equipped. In the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
, military planners had also formulated similar requirements, which led to TsAGI, the Soviet aerodynamics bureau, performing extensive studies into variable geometry wings. TsAGI evolved two distinct designs, differing mainly in the distance (expressed as a percentage of total
wingspan The wingspan (or just span) of a bird or an airplane is the distance from one wingtip to the other wingtip. For example, the Boeing 777–200 has a wingspan of , and a wandering albatross (''Diomedea exulans'') caught in 1965 had a wingspan ...
) between the wing pivots. By adopting a wider spacing, this not only reduced the negative aerodynamic effects of changing wing sweep, but also provided a larger fixed wing section which could be used for landing gear or stores pylons. This could, in fact, be adapted to more-or-less existing airframes, which the Soviets accordingly did, such as with the Sukhoi Su-17 (based on the earlier swept wing Sukhoi Su-7). The limitation of the wide spacing, however, was that it reduced the benefits of variable geometry as much as it reduced their technical difficulties. As such, producing new, "clean-sheet" Soviet designs remained desirable. For this, TsAGI devised a more narrowly-spaced arrangement somewhat similar to that of the F-111. This design was used, albeit at different scales, for the
Mikoyan-Gurevich MiG-23 The Mikoyan-Gurevich MiG-23 (russian: Микоян и Гуревич МиГ-23; NATO reporting name: Flogger) is a variable-geometry fighter aircraft, designed by the Mikoyan-Gurevich design bureau in the Soviet Union. It is a third-generati ...
fighter and the Sukhoi Su-24 interceptor, both of which flew in prototype forms around the end of the 1960s and entering service during the early 1970s. During 1962, Tupolev's design team, recognising room for improvement on the recently introduced Tupolev Tu-22 bomber, begun work on an extensively redesigned derivative that incorporated a variable geometry wing, intended to address the Tu-22's poor handling characteristics more so than bolstering its efficiency at high speeds.Kandalov & Duffy 1996, p. 124.Eden, Paul, ed. "Tupolev Tu-22/22M". ''Encyclopedia of Modern Military Aircraft''. London: Amber Books, 2004. . more than 100 Tupolev Tu-22M strategic bombers are in use. During the late 1950s and early 1960s, Britain was developing the BAC TSR-2, a supersonic low-level strategic bomber. Later variants of the type would have been fitted with variable-geometry wings. However, on 1 April 1965, development of the TSR-2 was terminated during the flight testing phase primarily due to the programme's spiralling costs.''Conclusions of a Meeting of the Cabinet held at 10 am. 10 Downing Street, S.W.1, on Thursday, 1st April, 1965'', CC(65)20, CAB/128/39. London: Public Record Office, 2010.''Conclusions of a Meeting of the Cabinet held at 10 Downing Street, S.W.1, on Thursday, 1st April, 1965, at 10 p.m.'', CC(65)21, CAB/128/39. London: Public Record Office, 2010. To replace the TSR-2, the Air Ministry initially placed an option for the American General Dynamics F-111K;Healey, D. W. ''The Need for an Option on the F-111A'', C(65)58, CAB/129/121. London: Public Record Office, 2010. while the F-111K was promoted as being cheaper,Wood 1986, p. 181. this too was terminated during January 1968 on grounds of cost.Logan 1998, pp. 278–80. Following the TSR-2's cancellation, BAC moved their variable-geometry work to Warton, there submitting the P.45 light attack/trainer to AST 362. This work fed into a joint Anglo-French programme to develop a variable geometry strike aircraft – the Anglo French Variable Geometry Aircraft (AFVG). This multirole aircraft was to be equipped with a variable geometry wing and was intended to perform the strike, reconnaissance, and interceptor roles."Anglo-French projects go ahead... The AFVG and its dual role."
''Flight'' via ''flightglobal.com,'' 26 January 1967.
Wood 1975, p. 202. However, as early as 1966, the French aircraft manufacturer
Dassault Dassault Group (; also GIM Dassault or Groupe Industriel Marcel Dassault SAS) is a French group of companies established in 1929 with the creation of Société des Avions Marcel Bloch (now Dassault Aviation) by Marcel Dassault, and led by son ...
began to actively undermine the AFVG, as it was working on two competing in-house projects: the variable geometry Mirage G and the Mirage F1. According to aviation author Derek Wood, both Dassault and the French Air Force were unenthusiastic participants in the AFVG, the former wanting to pursue its own indigenous variable geometry aircraft, while the latter had determined that the type did not align with its future equipment plans. In June 1967, the French government announced their withdrawal from the AFVG project ostensibly on the grounds of cost.Wood 1975, pp. 203–204. Despite the AFVG programme's collapse, the design was revamped by BAC into a larger strike-oriented variable geometry aircraft. Holding contracts were issued to BAC to support the project, which had been re-designated as the United Kingdom Variable Geometry (UKVG) aircraft.Heron 2002, p. 11.Wood 1975, p. 204. In November 1967, BAC issued a brochure on the UKVG proposal; various proposals would be issued to cover the use of multiple different engines. The quick production of a demonstrator aircraft, powered by a pair of Rolls-Royce/MAN Turbo RB153
turbofan The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the ''turbo'' portion refers to a gas turbine engine which achieves mechanical ...
engines, was also mooted. As solely funding for the UKVG was largely unrealistic, the British government pursued partners within its fellow
NATO The North Atlantic Treaty Organization (NATO, ; french: Organisation du traité de l'Atlantique nord, ), also called the North Atlantic Alliance, is an intergovernmental military alliance between 30 member states – 28 European and two No ...
members, promoting the concept of developing and procuring a common NATO strike aircraft. In July 1968, a memorandum of understanding was signed between Britain,
West Germany West Germany is the colloquial term used to indicate the Federal Republic of Germany (FRG; german: Bundesrepublik Deutschland , BRD) between its formation on 23 May 1949 and the German reunification through the accession of East Germany on 3 O ...
,
Italy Italy ( it, Italia ), officially the Italian Republic, ) or the Republic of Italy, is a country in Southern Europe. It is located in the middle of the Mediterranean Sea, and its territory largely coincides with the homonymous geographical ...
, the
Netherlands ) , anthem = ( en, "William of Nassau") , image_map = , map_caption = , subdivision_type = Sovereign state , subdivision_name = Kingdom of the Netherlands , established_title = Before independence , established_date = Spanish Netherl ...
,
Belgium Belgium, ; french: Belgique ; german: Belgien officially the Kingdom of Belgium, is a country in Northwestern Europe. The country is bordered by the Netherlands to the north, Germany to the east, Luxembourg to the southeast, France to ...
, and
Canada Canada is a country in North America. Its ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, covering over , making it the world's second-largest country by tota ...
.Wood 1975, pp. 204, 206. This memorandum eventually led to the launch of the multinational Multi-Role Combat Aircraft (MRCA) project, which successfully produced a variable geometry aircraft for the strike, reconnaissance, and interception missions in the form of the Panavia Tornado.Wood 1975, p. 206. Following the AFVG effort, Dassault Aviation constructed a prototype fighter, the Dassault Mirage G, completing two aircraft, the Mirage G4 and G8, in 1968. Furthermore, Dassault also worked in cooperation with the American manufacturing interest Ling-Temco-Vought to develop the ''LTV V-507'', which was submitted for US Navy's VFX project. From the VFX submissions, the US Navy procured the Grumman F-14 Tomcat to replace the canceled F-111B fleet interceptor during the 1970s. The F-14 was a more nimble fighter than the F-4 Phantom II and, unlike the F-111, its variable-sweep wings automatically adjusted over its speed range, and could be moved even during turns. Furthermore, the wings could be swept forward for tight "bat" turns in close quarters aerial combat, as well as rearwards for dash speeds.Kress, Bob and RADM Gilchrist USNRet
"F-14D Tomcat vs. F/18 E/F Super Hornet."
''Flight Journal Magazine'', February 2002 Issue. Quote: "dedicated air combat occurs at below about 0.8 because of high turning drag – an arena in which the F-14's 20-degree sweep is optimal ... it has only 36 percent of the F-14's payload/range capability."
Rockwell adopted variable geometry for the much larger Advanced Manned Strategic Bomber (AMSA) program that produced the
B-1 Lancer The Rockwell B-1 Lancer is a supersonic variable-sweep wing, heavy bomber used by the United States Air Force. It is commonly called the "Bone" (from "B-One"). It is one of three strategic bombers serving in the U.S. Air Force fleet along w ...
bomber, intended to provide an optimum combination of high-speed cruising efficiency and fast, supersonic penetration speeds at extremely low level. The B-1's variable-sweep wings provide a relatively high level of lift during takeoff and landing, while also generating little drag during a high-speed dash. When the wings were set to their widest position the aircraft had considerably better lift and power than the B-52, allowing the B-1 to operate from a much wider variety of bases.Lee 2008, p. 13. Rockwell submitted its proposal in January 1970, competing against bids by Boeing and General Dynamics.Pace 1998, pp. 22-23. The B-1's development was authorised in October 1981 as a stopgap between the increasingly vulnerable B-52 and the more capable Advanced Technology Bomber (ATB).Coates, James
"Reagan approves B-1, alters basing for MX."
''Chicago Tribune'', 3 October 1981. Retrieved: 28 July 2010.
Initial operational capability was reached on 1 October 1986 and the B-1B was placed on nuclear alert status.Jenkins 1999, p. 83. The Soviet Union also opted to develop a large strategic bomber equipped with variable geometry wings. During the early 1970s, Tupolev's design, which was initially designated ''Aircraft 160M'', featured a lengthened blended wing layout and incorporated some elements of the Tu-144, competed against the Myasishchev M-18 and the Sukhoi T-4 designs. Designated as the Tupolev Tu-160, it entered operational service with the 184th Guards Heavy Bomber Regiment located at Pryluky Air Base, Ukrainian SSR, during April 1987. The aircraft is the largest and heaviest combat aircraft, the fastest bomber in use and the largest and heaviest variable-sweep wing airplane to have ever flown as of 2020.


Obsolescence

A variable-sweep wing was selected as the winning design used by
Boeing The Boeing Company () is an American multinational corporation that designs, manufactures, and sells airplanes, rotorcraft, rockets, satellites, telecommunications equipment, and missiles worldwide. The company also provides leasing and ...
's entry in the FAA's study for a supersonic transport, the 2707. However it evolved through several configurations during the design stage, finally adding a canard, and it eventually became clear that the design would be so heavy that it would be lacking sufficient payload for the fuel needed. The design was later abandoned in favor of a more conventional tailed delta wing. The advent of relaxed stability flight control systems in the 1970s negated many of the disadvantages of a fixed-wing configuration. No new variable-sweep wing aircraft have been built since the Tu-160 (produced until 1992), though it has been noted that the F-14's replacement – the
F/A-18E The Boeing F/A-18E and F/A-18F Super Hornet are twin-engine, carrier-capable, multirole fighter aircraft variants based on the McDonnell Douglas F/A-18 Hornet. The F/A-18E single-seat and F/A-18F tandem-seat variants are larger and more adv ...
– has a reduced payload/range capability largely because of its small fixed wings. In 2015, the Russian Ministry of Defence announced plans to restart Tu-160 production, citing the aging of the current aircraft and likely protracted development of its eventual replacement, the
PAK DA The Tupolev PAK DA or PAK DA (russian: ПАК ДА, russian: label=short for, Перспективный авиационный комплекс дальней авиации, Perspektivnyi aviatsionnyi kompleks dal'ney aviatsii, 'Prospective avi ...
project. Production was planned to restart in 2020, marking the first new variable sweep airframes to be produced in 28 years.


List of variable-sweep aircraft

, - , Bell X-5 , , USA , , Jet , , Research , , 1951 , , Prototype , , 2 , , Development of the Messerschmitt P.1101 (qv) allowing sweep variation in-flight. , - , Dassault Mirage G , , France , , Jet , , Fighter , , 1967 , , Prototype , , 3 , , , - , General Dynamics F-111 , , USA , , Jet , , Fighter-bomber , , 1964 , , Production , , 563 , , , - , Grumman XF10F Jaguar , , USA , , Jet , , Fighter , , 1952 , , Prototype , , 1 , , 2nd example not flown. , - , Grumman F-14 Tomcat , , USA , , Jet , , Fighter , , 1970 , , Production , , 712 , , , - , Messerschmitt P.1101 , , Germany , , Jet , , Research , , 1945 , , Project , , 0 , , 1 unfinished airframe. Wings variable to 3 pre-set positions only while on the ground. , - ,
Mikoyan-Gurevich MiG-23 The Mikoyan-Gurevich MiG-23 (russian: Микоян и Гуревич МиГ-23; NATO reporting name: Flogger) is a variable-geometry fighter aircraft, designed by the Mikoyan-Gurevich design bureau in the Soviet Union. It is a third-generati ...
, , USSR , , Jet , , Fighter , , 1967 , , Production , , 5,047 , , , - , Mikoyan-Gurevich MiG-27 , , USSR , , Jet , , Attack , , 1970 , , Production , , 1,075 , , Development of the MiG-23. , - , Panavia Tornado (MRCA) , , International , , Jet , , Multirole , , 1974 , , Production , , 992 , , , - , Rockwell B-1 Lancer , , USA , , Jet , , Bomber , , 1974 , , Production , , 104 , , , - , Sukhoi Su-17, 20 & 22 , , USSR , , Jet , , Fighter-Bomber , , 1966 , , Production , , 2,867 , , , - , Sukhoi Su-24 , , USSR , , Jet , , Attack , , 1970 , , Production , , 1,400 (approx) , , , - , Tupolev Tu-22M , , USSR , , Jet , , Bomber , , 1969 , , Production , , 497 , , , - , Tupolev Tu-160 , , USSR , , Jet , , Bomber , , 1981 , , Production , , 36 , , , - , Vickers ''Wild Goose'' , , UK , , UAV , , Research , , 1950 , , Prototype , , 1 , , Designed by Barnes Wallis. , - ,
Vickers Swallow The Vickers Swallow was a supersonic aircraft project headed by Barnes Wallis, working at the British aircraft company Vickers-Armstrongs. It was a wing controlled aerodyne, controlled in flight by movement of the entire wing, and was the supers ...
, , UK , , Jet , , Airliner , , 1957 , , Project , , 0 , , Designed by Barnes Wallis. Small-scale test UAV flown. , - , Westland-Hill Pterodactyl IV , , UK , , Propeller , , Private , , 1931 , , Prototype , , 1 , , Variable 4.75° for trim.Lukins, A.H.; ''The Book of Westland Aircraft'', Aircraft (Technical) Publications Ltd, 1943 or 1944. pp.68-9.


See also

* Adaptive compliant wing * Variable-incidence wing * Variable camber wing


References


Notes


Citations


Bibliography

* * * DeMeis, Richard. "No Room to Swing a Cat." ''Wings'', Volume 6, No. 4, August 1976. * * * Green, William. ''The Observer's Book of Aircraft''. London. Frederick Warne & Co. Ltd., 1972. . * * Heron, Group Captain Jock
"Eroding the Requirement." ''The Birth of Tornado.''
London: Royal Air Force Historical Society, 2002. . * Hirschel, Ernst Heinrich., Horst Prem and Gero Madelung. ''Aeronautical Research in Germany: From Lilienthal until Today.'' Springer Science & Business Media, 2012. . * * Kandalov, Andrei; Duffy, Paul (1996). ''Tupolev – The Man and His Aircraft: The Man and His Aircraft''. Society of Automotive Engineers. . * * Logan, Don. ''General Dynamics F-111 Aardvark''. Atglen, Pennsylvania: Schiffer Military History, 1998. . * * Miller, Jay. ''General Dynamics F-111 "Aardvark"''. Fallbrook, California: Aero Publishers, 1982. . * Morpurgo, J.E. ''Barnes Wallis: A Biography.'' 2nd Edn, 1981. (1st Edn, Longmans, 1972). * * Thomason, Tommy. ''Grumman Navy F-111B Swing Wing'' (Navy Fighters No. 41). Simi Valley, California: Steve Ginter, 1998. . * Winchester, Jim. ''The World's Worst Aircraft: From Pioneering Failures to Multimillion Dollar Disasters''. London: Amber Books Ltd., 2005. . * Wood, Derek. ''Project Cancelled''. Macdonald and Jane's Publishers, 1975. . {{Aircraft components Aircraft wing components Wing configurations Aircraft performance