HOME

TheInfoList



OR:

The upside-potential ratio is a measure of a return of an investment asset relative to the minimal acceptable return. The measurement allows a firm or individual to choose investments which have had relatively good upside performance, per unit of downside risk. : U = = \frac, where the returns R_r have been put into increasing order. Here P_r is the probability of the return R_r and R_\min which occurs at r=\min is the minimal acceptable return. In the secondary formula (X)_+ = \beginX &\textX \geq 0\\ 0 &\text\end and (X)_- = (-X)_+. The upside-potential ratio may also be expressed as a ratio of partial moments since \mathbb R_r - R_\min)_+/math> is the first upper moment and \mathbb R_r - R_\min)_-^2/math> is the second lower partial moment. The measure was developed by Frank A. Sortino.


Discussion

The upside-potential ratio is a measure of risk-adjusted returns. All such measures are dependent on some measure of risk. In practice,
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
is often used, perhaps because it is mathematically easy to manipulate. However, standard deviation treats deviations above the mean (which are desirable, from the investor's perspective) exactly the same as it treats deviations below the mean (which are less desirable, at the very least). In practice, rational investors have a preference for good returns (e.g., deviations above the mean) and an aversion to bad returns (e.g., deviations below the mean). Sortino further found that investors are (or, at least, should be) averse not to deviations below the mean, but to deviations below some "minimal acceptable return" (MAR), which is meaningful to them specifically. Thus, this measure uses deviations above the MAR in the numerator, rewarding performance above the MAR. In the denominator, it has deviations below the MAR, thus penalizing performance below the MAR. Thus, by rewarding desirable results in the numerator and penalizing undesirable results in the denominator, this measure attempts to serve as a pragmatic measure of the goodness of an investment portfolio's returns in a sense that is not just mathematically simple (a primary reason to use standard deviation as a risk measure), but one that considers the realities of investor psychology and behavior.


See also

* Modern portfolio theory * Modigliani risk-adjusted performance *
Omega ratio The Omega ratio is a risk-return performance measure of an investment asset, portfolio, or strategy. It was devised by Con Keating and William F. Shadwick in 2002 and is defined as the probability weighted ratio of gains versus losses for some thres ...
* Sharpe ratio * Sortino ratio


References

{{Reflist Financial ratios Investment indicators Statistical ratios