In
linear algebra, a Hessenberg matrix is a special kind of
square matrix
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
, one that is "almost"
triangular. To be exact, an upper Hessenberg matrix has zero entries below the first
subdiagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ� ...
, and a lower Hessenberg matrix has zero entries above the first
superdiagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ� ...
. They are named after
Karl Hessenberg
Karl Adolf Hessenberg (September 8, 1904 – February 22, 1959) was a German mathematician and engineer. The Hessenberg matrix form is named after him.
Education
From 1925 to 1930 he studied electrical engineering at the Technische Hochschule ...
.
Definitions
Upper Hessenberg matrix
A square
matrix
is said to be in upper Hessenberg form or to be an upper Hessenberg matrix if
for all
with
.
An upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero, i.e. if
for all
.
Lower Hessenberg matrix
A square
matrix
is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose
is an upper Hessenberg matrix or equivalently if
for all
with
.
A lower Hessenberg matrix is called unreduced if all superdiagonal entries are nonzero, i.e. if
for all
.
Examples
Consider the following matrices.
:
:
:
The matrix
is an upper unreduced Hessenberg matrix,
is a lower unreduced Hessenberg matrix and
is a lower Hessenberg matrix but is not unreduced.
Computer programming
Many linear algebra
algorithms require significantly less
computational effort when applied to
triangular matrices
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are ...
, and this improvement often carries over to Hessenberg matrices as well. If the constraints of a linear algebra problem do not allow a general matrix to be conveniently reduced to a triangular one, reduction to Hessenberg form is often the next best thing. In fact, reduction of any matrix to a Hessenberg form can be achieved in a finite number of steps (for example, through
Householder's transformation of unitary similarity transforms). Subsequent reduction of Hessenberg matrix to a triangular matrix can be achieved through iterative procedures, such as shifted
QR-factorization. In
eigenvalue algorithms, the Hessenberg matrix can be further reduced to a triangular matrix through Shifted QR-factorization combined with deflation steps. Reducing a general matrix to a Hessenberg matrix and then reducing further to a triangular matrix, instead of directly reducing a general matrix to a triangular matrix, often economizes the arithmetic involved in the
QR algorithm for eigenvalue problems.
Reduction to Hessenberg matrix
Any
matrix can be transformed into a Hessenberg matrix by a similarity transformation using Householder transformations. The following procedure for such a transformation is adapted from A Second Course In Linear Algebra by ''Garcia & Roger''.
Let
be any real or complex
matrix, then let
be the
submatrix of
constructed by removing the first row in
and let
be the first column of
. Construct the
householder matrix
where
This householder matrix will map
to
and as such, the block matrix
will map the matrix
to the matrix
which has only zeros below the second entry of the first column. Now construct
householder matrix
in a similar manner as
such that
maps the first column of
to
, where
is the submatrix of
constructed by removing the first row and the first column of
, then let
which maps
to the matrix
which has only zeros below the first and second entry of the subdiagonal. Now construct
and then
in a similar manner, but for the matrix
constructed by removing the first row and first column of
and proceed as in the previous steps. Continue like this for a total of
steps.
Realising that the first
rows of any
matrix is invariant under multiplication by
from the right, by construction of
, and so, any matrix can be transformed to an upper Hessenberg matrix by a similarity transformation of the form
.
Properties
For
, it is
vacuously true that every
matrix is both upper Hessenberg, and lower Hessenberg.
The product of a Hessenberg matrix with a triangular matrix is again Hessenberg. More precisely, if
is upper Hessenberg and
is upper triangular, then
and
are upper Hessenberg.
A matrix that is both upper Hessenberg and lower Hessenberg is a
tridiagonal matrix, of which symmetric or Hermitian Hessenberg matrices are important examples. A Hermitian matrix can be reduced to tri-diagonal real symmetric matrices.
Hessenberg operator
The Hessenberg operator is an infinite dimensional Hessenberg matrix. It commonly occurs as the generalization of the
Jacobi operator to a system of
orthogonal polynomials for the space of
square-integrable holomorphic functions over some domain—that is, a
Bergman space In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain ''D'' of the complex plane that are sufficiently well-behaved at the boundary that t ...
. In this case, the Hessenberg operator is the right-
shift operator , given by
:
.
The
eigenvalues of each principal submatrix of the Hessenberg operator are given by the
characteristic polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The chara ...
for that submatrix. These polynomials are called the
Bergman polynomials, and provide an
orthogonal polynomial
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
The most widely used orthogonal polynomials are the cla ...
basis for Bergman space.
See also
*
Hessenberg variety In geometry, Hessenberg varieties, first studied by Filippo De Mari, Claudio Procesi, and Mark A. Shayman, are a family of subvarieties of the full flag variety which are defined by a Hessenberg function ''h'' and a linear transformation ''X'' ...
Notes
References
* .
* .
*
External links
Hessenberg matrixat MathWorld.
*
High performance algorithmsfor reduction to condensed (Hessenberg, tridiagonal, bidiagonal) form
{{DEFAULTSORT:Hessenberg Matrix
Matrices