HOME

TheInfoList



OR:

In theoretical physics, unparticle physics is a speculative theory that conjectures a form of matter that cannot be explained in terms of particles using the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
of particle physics, because its components are scale invariant. Howard Georgi proposed this theory in two 2007 papers, "Unparticle Physics" and "Another Odd Thing About Unparticle Physics". His papers were followed by further work by other researchers into the properties and phenomenology of unparticle physics and its potential impact on particle physics,
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
, cosmology, CP violation,
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
flavour Flavor or flavour is either the sensory perception of taste or smell, or a flavoring in food that produces such perception. Flavor or flavour may also refer to: Science *Flavors (programming language), an early object-oriented extension to Lisp ...
violation, muon decay, neutrino oscillations, and
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories e ...
.


Background

All particles exist in states that may be characterized by a certain energy,
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
and mass. In most of the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
of particle physics, particles of the same type cannot exist in another state with all these properties scaled up or down by a common factor – electrons, for example, always have the same mass regardless of their energy or momentum. But this is not always the case: massless particles, such as photons, can exist with their properties scaled equally. This immunity to scaling is called "scale invariance". The idea of unparticles comes from conjecturing that there may be "stuff" that does not necessarily have zero mass but is still scale-invariant, with the same physics regardless of a change of length (or equivalently energy). This stuff is unlike particles, and described as unparticle. The unparticle stuff is equivalent to particles with a continuous spectrum of mass. Such unparticle stuff has not been observed, which suggests that if it exists, it must couple with normal matter weakly at observable energies. Since the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundred ...
(LHC) team announced it will begin probing a higher energy frontier in 2009, some theoretical physicists have begun to consider the properties of unparticle stuff and how it may appear in LHC experiments. One of the great hopes for the LHC is that it might come up with some discoveries that will help us update or replace our best description of the particles that make up matter and the forces that glue them together.


Properties

Unparticles would have properties in common with neutrinos, which have almost zero mass and are therefore nearly scale invariant. Neutrinos barely interact with matter – most of the time physicists can infer their presence only by calculating the "missing" energy and momentum after an interaction. By looking at the same interaction many times, a
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
is built up that tells more specifically how many and what sort of neutrinos are involved. They couple very weakly to ordinary matter at low energies, and the effect of the coupling increases as the energy increases. A similar technique could be used to search for evidence of unparticles. According to scale invariance, a distribution containing unparticles would become apparent because it would resemble a distribution for a fractional number of massless particles. This scale invariant sector would interact very weakly with the rest of the Standard Model, making it possible to observe evidence for unparticle stuff, if it exists. The unparticle theory is a high-energy theory that contains both Standard Model fields and Banks–Zaks fields, which have scale-invariant behavior at an infrared point. The two fields can interact through the interactions of ordinary particles if the energy of the interaction is sufficiently high. These particle interactions would appear to have "missing" energy and momentum that would not be detected by the experimental apparatus. Certain distinct distributions of missing energy would signify the production of unparticle stuff. If such signatures are not observed, bounds on the model can be set and refined.


Experimental indications

Unparticle physics has been proposed as an explanation for anomalies in superconducting cuprate materials, where the charge measured by ARPES appears to exceed predictions from Luttinger's theorem for the quantity of electrons.


References


External links

* * * * * * {{DEFAULTSORT:Unparticle Physics Particle physics Theoretical physics Hypothetical particles