In
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, a regular polygon is a
polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
that is
direct equiangular (all angles are equal in measure) and
equilateral
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
(all sides have the same length). Regular polygons may be either
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
,
star
A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make ...
or
skew. In the
limit
Limit or Limits may refer to:
Arts and media
* ''Limit'' (manga), a manga by Keiko Suenobu
* ''Limit'' (film), a South Korean film
* Limit (music), a way to characterize harmony
* "Limit" (song), a 2016 single by Luna Sea
* "Limits", a 2019 ...
, a sequence of regular polygons with an increasing number of sides approximates a
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
, if the
perimeter
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.
Calculating the perimeter has several pr ...
or
area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
is fixed, or a regular
apeirogon
In geometry, an apeirogon () or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes.
In some literature, the term "apeirogon" may refer only to ...
(effectively a
straight line
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment ...
), if the edge length is fixed.
General properties

''These properties apply to all regular polygons, whether convex or
star
A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make ...
.''
A regular ''n''-sided polygon has
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
of order ''n''.
All vertices of a regular polygon lie on a common circle (the
circumscribed circle
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every poly ...
); i.e., they are concyclic points. That is, a regular polygon is a
cyclic polygon
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
.
Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or
incircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter ...
that is tangent to every side at the midpoint. Thus a regular polygon is a
tangential polygon
In Euclidean geometry, a tangential polygon, also known as a circumscribed polygon, is a convex polygon that contains an inscribed circle (also called an ''incircle''). This is a circle that is tangent to each of the polygon's sides. The dual pol ...
.
A regular ''n''-sided polygon can be constructed with
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
if and only if the
odd prime
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
factors of ''n'' are distinct
Fermat prime
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form
:F_ = 2^ + 1,
where ''n'' is a non-negative integer. The first few Fermat numbers are:
: 3, 5, 17, 257, 65537, 4294967 ...
s. See
constructible polygon
In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infini ...
.
A regular ''n''-sided polygon can be constructed with
origami
) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a f ...
if and only if
for some
, where each distinct
is a
Pierpont prime
In number theory, a Pierpont prime is a prime number of the form
2^u\cdot 3^v + 1\,
for some nonnegative integers and . That is, they are the prime numbers for which is 3-smooth. They are named after the mathematician James Pierpont, who us ...
.
Symmetry
The
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of an ''n''-sided regular polygon is
dihedral group
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ...
D
''n'' (of order 2''n''): D
2,
D3,
D4, ... It consists of the rotations in C
''n'', together with
reflection symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.
In 2D the ...
in ''n'' axes that pass through the center. If ''n'' is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If ''n'' is odd then all axes pass through a vertex and the midpoint of the opposite side.
Regular convex polygons
All regular
simple polygon
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a flat shape consisting of straight, non-intersecting line segments or "sides" that are joined pairwise to form a single closed path. If ...
s (a simple polygon is one that does not intersect itself anywhere) are convex. Those having the same number of sides are also
similar.
An ''n''-sided convex regular polygon is denoted by its
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
. For ''n'' < 3, we have two
degenerate
Degeneracy, degenerate, or degeneration may refer to:
Arts and entertainment
* ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed
* Degenerate art, a term adopted in the 1920s by the Nazi Party in Germany to descr ...
cases:
;
Monogon
In geometry, a monogon, also known as a henagon, is a polygon with one edge and one vertex. It has Schläfli symbol .Coxeter, ''Introduction to geometry'', 1969, Second edition, sec 21.3 ''Regular maps'', p. 386-388
In Euclidean geometry
In Eucli ...
: Degenerate in
ordinary space. (Most authorities do not regard the monogon as a true polygon, partly because of this, and also because the formulae below do not work, and its structure is not that of any
abstract polygon.)
;
Digon
In geometry, a digon is a polygon with two sides ( edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
; a "double line segment": Degenerate in
ordinary space. (Some authorities do not regard the digon as a true polygon because of this.)
In certain contexts all the polygons considered will be regular. In such circumstances it is customary to drop the prefix regular. For instance, all the faces of
uniform polyhedra
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent.
Uniform polyhedra may be regular (if also f ...
must be regular and the faces will be described simply as triangle, square, pentagon, etc.
Angles
For a regular convex ''n''-gon, each interior angle has a measure of:
:
degrees;
:
radians; or
:
full
turns,
and each
exterior angle
In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an interior angle (or ) if ...
(i.e.,
supplementary
The term supplementary can refer to:
* Supplementary angles
* Supplementary Benefit, a former benefit payable in the United Kingdom
* Supplementary question, a type of question asked during a questioning time for prime minister
See also
* Sup ...
to the interior angle) has a measure of
degrees, with the sum of the exterior angles equal to 360 degrees or 2π radians or one full turn.
As ''n'' approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a
myriagon
In geometry, a myriagon or 10000-gon is a polygon with 10,000 sides. Several philosophers have used the regular myriagon to illustrate issues regarding thought. Meditation VI by Descartes (English translation).
Regular myriagon
A regular myriago ...
) the internal angle is 179.964°. As the number of sides increase, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle. The value of the internal angle can never become exactly equal to 180°, as the circumference would effectively become a straight line. For this reason, a circle is not a polygon with an infinite number of sides.
Diagonals
For ''n'' > 2, the number of