HOME

TheInfoList



OR:

Ultrasonic machining is a subtractive manufacturing process that removes material from the surface of a part through high frequency, low amplitude vibrations of a tool against the material surface in the presence of fine abrasive particles. The tool travels vertically or orthogonal to the surface of the part at amplitudes of 0.05 to 0.125 mm (0.002 to 0.005 in.). The fine abrasive grains are mixed with water to form a
slurry A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal p ...
that is distributed across the part and the tip of the tool. Typical grain sizes of the abrasive material range from 100 to 1000, where smaller grains (higher grain number) produce smoother surface finishes. Ultrasonic vibration machining is typically used on
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. ...
materials as well as materials with a high
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion (mechanical), abrasion. In general, different materials differ in their hardn ...
due to the microcracking mechanics.


Process

An ultrasonically vibrating machine consists of two major components, an electroacoustic
transducer A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and cont ...
and a sonotrode, attached to an electronic control unit with a cable. An
electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. Oscillators convert direct current (DC) from a power supply to an alternating cur ...
in the control unit produces an
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in which ...
oscillating at a high
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from '' angular frequency''. Frequency is measured in hertz (Hz) which is ...
, usually between 18 and 40 kHz in the
ultrasonic Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies f ...
range. The transducer converts the oscillating current to a mechanical vibration. Two types of transducers have been used in ultrasonic machining; either piezoelectric or magnetostrictive: ; Piezoelectric transducer: This consists of a piece of
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word ' ...
ceramic, such as
barium titanate Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material th ...
, with two metal electrodes plated on its surface. The alternating voltage from the control unit applied to the electrodes causes the piezoelectric element to bend back and forth slightly, causing it to vibrate. ; Magnetostrictive transducer: This consists of a cylinder of
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
material such as steel inside a coil of wire.
Magnetostriction Magnetostriction (cf. electrostriction) is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization. The variation of materials' magnetization due to the applied magnetic field chang ...
is an effect which causes a material to change shape slightly when a magnetic field through it changes. The alternating current from the control unit, applied to the coil, creates an alternating
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and t ...
in the magnetostrictive cylinder which makes it change shape slightly with each oscillation, causing it to vibrate. The transducer vibrates the sonotrode at low amplitudes and high frequencies. The sonotrode is usually made of low carbon steel. A constant stream of abrasive slurry flows between the sonotrode and work piece. This flow of slurry allows debris to flow away from the work cutting area. The slurry usually consists of abrasive boron carbide, aluminum oxide or silicon carbide particles in a suspension of water (20 to 60% by volume). The sonotrode removes material from the work piece by abrasion where it contacts it, so the result of machining is to cut a perfect negative of the sonotrode's profile into the work piece. Ultrasonic vibration machining allows extremely complex and non-uniform shapes to be cut into the workpiece with extremely high precision. Machining time depends on the workpiece's strength,
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion (mechanical), abrasion. In general, different materials differ in their hardn ...
,
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
and
fracture toughness In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a ...
; the slurry's material and particle size; and the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of a ...
of the sonotrode's vibration. The surface finish of materials after machining depends heavily on hardness and strength, with softer and weaker materials exhibiting smoother surface finishes. The inclusion of microcrack and microcavity features on the materials surface depend highly on the crystallographic orientation of the work piece's grains and the materials
fracture toughness In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a ...
.


Mechanics

Ultrasonic vibration machining physically operates by the mechanism of microchipping or erosion on the work piece's surface. Since the abrasive slurry is kept in motion by high frequency, low amplitude vibrations, the impact forces of the slurry are significant, causing high contact stresses. These high contact stresses are achieved by the small contact area between the slurry's particles and the work piece's surface. Brittle materials fail by cracking mechanics and these high stresses are sufficient to cause micro-scale chips to be removed from its surface. The material as a whole does not fail due to the extremely localized stress regions. The average force imparted by a particle of the slurry impacting the work piece's surface and rebounding can be characterized by the following equation: : F_ = \frac Where ''m'' is the mass of the particle, ''v'' is the velocity of the particle when striking the surface and ''to'' is the contact time, which can be approximated according to the following equation: : t_o \simeq \frac \left( \frac \right)^\frac : c_o = \sqrt Where ''r'' is the radius of the particle, ''co'' is the elastic wave velocity of the work piece, ''E'' is the work pieces Young's Modulus and ''ρ'' is the materials density.


Types


Rotary ultrasonic vibration machining

In rotary ultrasonic vibration machining (RUM), the vertically oscillating tool is able to revolve about the vertical center line of the tool. Instead of using an abrasive
slurry A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal p ...
to remove material, the surface of the tool is impregnated with diamonds that
grind A blade's grind is its cross-sectional shape in a plane normal to the edge. Grind differs from blade profile, which is the blade's cross-sectional shape in the plane containing the blade's edge and the centre contour of the blade's back (m ...
down the surface of the part. Rotary ultrasonic machines are specialized in machining advanced ceramics and alloys such as
glass Glass is a non-Crystallinity, crystalline, often transparency and translucency, transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most ...
,
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical ...
, structural ceramics, Ti-alloys, alumina, and
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal ...
. Rotary ultrasonic machines are used to produce deep holes with a high level of precision. Rotary ultrasonic vibration machining is a relatively new manufacturing process that is still being extensively researched. Currently, researchers are trying to adapt this process to the micro level and to allow the machine to operate similar to a
milling machine Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying direction on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of d ...
.


Chemical-assisted ultrasonic vibration machining

In chemical-assisted ultrasonic machining (CUSM), a chemically reactive abrasive fluid is used to ensure greater machining of glass and ceramic materials. Using an acidic solution, such as hydrofluoric acid, machining characteristics such as material removal rate and surface quality can be improved greatly compared to traditional ultrasonic machining. While time spent machining and surface roughness decrease with CUSM, the entrance profile diameter is slightly larger than normal due to the additional chemical reactivity of the new slurry choice. In order to limit the extent of this enlargement, the acid content of the slurry must be carefully selected as to ensure user safety and a quality product.


Applications

Since ultrasonic vibration machining does not use subtractive methods that may alter the physical properties of a workpiece, such as thermal, chemical, or electrical processes, it has many useful applications for materials that are more brittle and sensitive than traditional machining metals. Materials that are commonly machined using ultrasonic methods include ceramics, carbides, glass, precious stones and hardened steels. These materials are used in optical and electrical applications where more precise machining methods are required to ensure dimensional accuracy and quality performance of hard and brittle materials. Ultrasonic machining is precise enough to be used in the creation of microelectromechanical system components such as micro-structured glass wafers. In addition to small-scale components, ultrasonic vibration machining is used for structural components because of the required precision and surface quality provided by the method. The process can safely and effectively create shapes out of high-quality single crystal materials that are often necessary but difficult to generate during normal crystal growth. As advanced ceramics become a greater part of the structural engineering realm, ultrasonic machining will continue to provide precise and effective methods of ensuring proper physical dimensions while maintaining crystallographic properties.


Advantages

Ultrasonic vibration machining is a unique non-traditional manufacturing process because it can produce parts with high precision that are made of hard and brittle materials which are often difficult to machine. Additionally, ultrasonic machining is capable of manufacturing fragile materials such as glass and non-conductive metals that can not be machined by alternative methods such as
electrical discharge machining Electrical discharge machining (EDM), also known as spark machining, spark eroding, die sinking, wire burning or wire erosion, is a metal fabrication process whereby a desired shape is obtained by using electrical discharges (sparks). Material i ...
and electrochemical machining. Ultrasonic machining is able to produce high-tolerance parts because there is no distortion of the worked material. The absence of distortion is due to no heat generation from the sonotrode against the work piece and is beneficial because the physical properties of the part will remain uniform throughout. Furthermore, no burrs are created in the process, thus fewer operations are required to produce a finished part.{{Cite journal, last = Jagadeesha, first = T, date = 2014, title = Ultrasonic Machining, url = http://www.nitc.ac.in/dept/me/jagadeesha/mev303/Chapter_3_USM.pdf, journal = Non Tradition Machining – National Institute of Technology Calicut


Disadvantages

Because ultrasonic vibration machining is driven by microchipping or erosion mechanisms, the material removal rate of metals can be slow and the sonotrode tip can wear down quickly from the constant impact of abrasive particles on the tool. Moreover, drilling deep holes in parts can prove difficult as the abrasive slurry will not effectively reach the bottom of the hole. Note, rotary ultrasonic machining is efficient at drilling deep holes in ceramics because the absence of a slurry cutting fluid and the cutting tool is coated in harder diamond abrasives. In addition, ultrasonic vibration machining can only be used on materials with a hardness value of at least 45 HRC.


References

Machining