HOME

TheInfoList



OR:

UGGT, or UDP-
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, usi ...
:
glycoprotein Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as g ...
glucosyltransferase, is a soluble
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
resident in the lumen of the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
(ER). The main function of UGGT is to recognize misfolded glycoproteins and transfer a glucose (Glc) monomer (monoglucosylate) to the terminal
mannose Mannose is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylation a ...
of the A-branch of the glycan on the glycoprotein. It uses
UDP-glucose Uridine diphosphate glucose (uracil-diphosphate glucose, UDP-glucose) is a nucleotide sugar. It is involved in glycosyltransferase reactions in metabolism. Functions UDP-glucose is used in nucleotide sugar metabolism as an activated form of g ...
(UDP-Glc) as the glucosyl donor and requires calcium ions for its activity: misfolded-glycoprotein-Asn-GlcNAc2Man9 + UDP-Glc => misfolded-glycoprotein-Asn-GlcNAc2Man9Glc1 + UDP UGGT is about 170 kDa and it consists of two structurally independent portions: a variable N-terminal portion of ~1200 amino acids, which in turn comprises 4 thioredoxin-like domains and two beta-sandwich domains, and senses glycoprotein misfolding; and a highly conserved C-terminal catalytic portion of ~300 amino acids, folding as a glucosyltransferase domain belonging to fold family GT24. Higher eukaryotes possess two isoforms, UGGT1 and UGGT2, but only in 2020 the latter was conclusively shown to be active in misfolded glycoprotein recognition UGGT is part of the ER quality control system of glycoprotein folding and its activity increases the potential for correctly folded glycoproteins. The main proteins involved in the ER quality control system are UGGT, the ER
lectin Lectins are carbohydrate-binding proteins that are highly specific for sugar groups that are part of other molecules, so cause agglutination of particular cells or precipitation of glycoconjugates and polysaccharides. Lectins have a role in rec ...
chaperones ( calnexin and calreticulin), and
glucosidase II Glucan 1,3-alpha-glucosidase (, ''exo-1,3-alpha-glucanase'', ''glucosidase II'', ''1,3-alpha-D-glucan 3-glucohydrolase'') is an enzyme with systematic name ''3-alpha-D-glucan 3-glucohydrolase''. This enzyme catalyses the following chemical reactio ...
. UGGT first recognizes the incompletely folded glycoprotein and monoglucosylates it. The lectins, calnexin and calreticulin, have high affinities for monoglucosylated proteins and the ER chaperones that associate with these lectins assist the folding of the misfolded glycoprotein. Subsequently, glucosidase II will deglucosylate the glycoprotein. If the glycoprotein is still misfolded, UGGT will re-glucosylate it and allow it to go through the cycle again. Currently, it is unclear how UGGT recognizes misfolded glycoprotein. It has been proposed that UGGT may bind to exposed hydrophobic stretches, a characteristic feature of misfolded proteins. UGGT crystal structures and
Molecular Dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of th ...
simulations suggest marked conformational mobility, which could explain the ability of the protein to recognise a wide variety of client glycoproteins of different shapes and forms. The same conformational mobility could account for the ability of the protein to re-glucosylate N-linked glycans at different distances from the misfold site. See for example the picture in which glycoproteins are symbolized by nuts and UGGT by an adjustable wrench.


References

{{reflist Molecular biology