Type-I Superconductor
   HOME

TheInfoList



OR:

The interior of a bulk superconductor cannot be penetrated by a weak
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
, a phenomenon known as the
Meissner effect In condensed-matter physics, the Meissner effect (or Meißner–Ochsenfeld effect) is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. Th ...
. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into two types according to how this breakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed via a first order phase transition when the strength of the applied field rises above a critical value ''H''c. This type of superconductivity is normally exhibited by pure metals, e.g. aluminium, lead, and mercury. The only alloys known up to now which exhibit type I superconductivity are tantalum silicide (TaSi2). and BeAu The covalent superconductor SiC:B,
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
heavily doped with boron, is also type-I. Depending on the demagnetization factor, one may obtain an intermediate state. This state, first described by
Lev Landau Lev Davidovich Landau (; 22 January 1908 – 1 April 1968) was a Soviet physicist who made fundamental contributions to many areas of theoretical physics. He was considered as one of the last scientists who were universally well-versed and ma ...
, is a phase separation into macroscopic non-superconducting and superconducting domains forming a Husimi Q representation. This behavior is different from
type-II superconductors In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
which exhibit two critical magnetic fields. The first, lower critical field occurs when magnetic flux vortices penetrate the material but the material remains superconducting outside of these microscopic vortices. When the vortex density becomes too large, the entire material becomes non-superconducting; this corresponds to the second, higher critical field. The ratio of the London penetration depth ''λ'' to the superconducting coherence length ''ξ'' determines whether a superconductor is type-I or type-II. Type-I superconductors are those with 0 < \tfrac < \tfrac, and type-II superconductors are those with \tfrac > \tfrac.


References

{{Superconductivity Superconductivity Magnetism