HOME

TheInfoList



OR:

Twin-turbo (not to be confused with a twincharger setup, which is a combination of a
supercharger In an internal combustion engine, a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement. The current categorisation is that a supercharger is a form of forced indu ...
and a turbocharger) refers to an
engine An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ...
in which two turbochargers work in tandem to compress the intake fuel/air mixture (or intake air, in the case of a direct-injection
engine An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ...
). The most common layout features two identical or mirrored turbochargers in parallel, each processing half of a
V engine A V engine, sometimes called a Vee engine, is a common configuration for internal combustion engines. It consists of two cylinder banks—usually with the same number of cylinders in each bank—connected to a common crankshaft. These cylinder ...
's produced exhaust through independent piping. The two turbochargers can either be matching or different sizes.


Types and combinations

There are three types of turbine setups used for twin-turbo setups: * Parallel * Sequential * Series These can be applied to any of the five types of compressor setups (which theoretically could have 15 different setups): * Compound Compressors * Staged Compound Compressors * Staged Sequential Compressors * Parallel Sequential Compressors * Parallel Compressors


Parallel

A parallel configuration refers to using two equally-sized turbochargers which each receive half of the exhaust gases. Some designs combine the intake charge from each turbocharger into a single intake manifold, while others use a separate intake manifold for each turbocharger. Parallel configurations are well suited to V6 and V8 engines since each turbocharger can be assigned to one cylinder bank, reducing the amount of exhaust piping needed. In this case, each turbocharger is fed exhaust gases by a separate exhaust manifold. For four-cylinder engines and
straight-six engine The straight-six engine (also referred to as an inline-six engine; abbreviated I6 or L6) is a piston engine with six cylinders arranged in a straight line along the crankshaft. A straight-six engine has perfect primary and secondary engine bal ...
s, both turbochargers can be mounted to a single exhaust manifold. The aim of using parallel twin-turbos is to reduce
turbo lag In an internal combustion engine, a turbocharger (often called a turbo) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake gas, forcing more air into the engine in order to pr ...
by being able to use smaller turbochargers than if a single turbocharger was used for the engine. On engines with multiple cylinder banks (e.g.
V engine A V engine, sometimes called a Vee engine, is a common configuration for internal combustion engines. It consists of two cylinder banks—usually with the same number of cylinders in each bank—connected to a common crankshaft. These cylinder ...
s and flat engines) use of parallel twin-turbos can also simplify the exhaust system. The 1981-1994 Maserati Biturbo was the first production car to use twin-turbochargers. The Biturbo used a 90-degree
SOHC An overhead camshaft (OHC) engine is a piston engine where the camshaft is located in the cylinder head above the combustion chamber. This contrasts with earlier overhead valve engines (OHV), where the camshaft is located below the combustion ch ...
V6 engine with one turbocharger per cylinder bank. Parallel configurations have also been used on engines with more than two turbochargers. One example is the 1991-1995 Bugatti EB110, which uses four turbochargers on its
V12 engine A V12 engine is a twelve- cylinder piston engine where two banks of six cylinders are arranged in a V configuration around a common crankshaft. V12 engines are more common than V10 engines. However, they are less common than V8 engines. The ...
. The 2005-2015
Bugatti Veyron The Bugatti Veyron EB 16.4 is a mid-engine sports car, designed and developed in Germany by the Volkswagen Group and Bugatti and manufactured in Molsheim, France, by French automobile manufacturer Bugatti. It was named after the racing driver ...
uses four turbochargers on its W16 engine. In diesel powered applications, notable examples are
Volkswagen Volkswagen (),English: , . abbreviated as VW (), is a German motor vehicle manufacturer headquartered in Wolfsburg, Lower Saxony, Germany. Founded in 1937 by the German Labour Front under the Nazi Party and revived into a global brand post ...
's V10 TDI which uses two BorgWarner turbochargers in a parallel layout and BMW's inline 6 B57 engine (B57D30O0, B57D30T0, B57D30S0), which is available in configurations of up to 4 turbochargers that operate in a double-series layout.


Sequential

Sequential turbocharging refer to a set-up in which the engine uses one turbocharger for lower engine speeds, and a second or both turbochargers at higher engine speeds. This system is intended to overcome the limitation of large turbochargers providing insufficient boost at low RPM. On the other hand, smaller turbos are effective at low RPM (when there is less kinetic energy present in the exhaust gases) but are unable to provide the quantity of compressed intake gases required at higher RPM. Therefore, sequential turbocharger systems provide a way to decrease turbo lag without compromising power output at high RPM. The system is arranged so that a small ("primary") turbocharger is active while the engine is operating at low RPM, which reduces the boost threshold (RPM at which effective boost is provided) and turbo lag. As RPM increases, a small amount of exhaust gas is fed to the larger ("secondary") turbocharger, to bring it up to operating speed. Then at high RPM, all of the exhaust gases are directed to the secondary turbocharger, so that it can provide the boost required by the engine at high RPM. The first production car to use sequential turbocharging was the 1986-1988 Porsche 959, which used sequential twin-turbos on its flat-six engine. Sequential turbocharging can also be used with more than two turbochargers, such as in the 2012-2017 BMW N57S straight-six diesel engine, which uses three sequential turbos.


Series

Serial turbocharging is where the turbochargers are connected in series with the output of the first turbocharger then being further compressed by the second turbocharger and in some cases powering the larger turbine. A sequential turbo can also be of use to a system where the output pressure must be greater than can be provided by a single turbo, commonly called a compound twin-turbo system. In this case, multiple similarly sized turbochargers are used in sequence, but constantly operating. The first turbo boosts provides the initial compression (for example to three times the intake pressure). Subsequent turbos take the charge from the previous stage and compress it further (for example to an additional three times intake pressure, for a total boost of nine times atmospheric pressure). A downside of staged turbocharging is that it often leads to large amounts of turbo lag, therefore it is mostly used on piston engine aircraft which usually do not need to rapidly raise and lower engine speed. (and thus where
turbo lag In an internal combustion engine, a turbocharger (often called a turbo) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake gas, forcing more air into the engine in order to pr ...
is not a primary design consideration), and where the intake pressure is quite low due to low atmospheric pressure at altitude, requiring a very high pressure ratio. High-performance diesel engines also sometimes use this configuration, since diesel engines do not suffer from pre-ignition issues and can therefore use high boost pressures.


Quad-turbo

Automobile manufacturers rarely use more than two turbochargers. Some exceptions are the triple-turbocharger system used by the 2012-2017 BMW N57S straight-six diesel engine, the quad-turbocharger system used by the V12 engine in the 1991-1995 Bugatti EB110 and the quad-turbocharger system used by the W16 engine in the 2005-2015 Bugatti Veyron and 2016-present Bugatti Chiron.


See also


References


External links

http://mkiv.supras.org.nz/articles/twinturbosetups.htm{{Automotive engine , expanded Turbochargers