In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a tubular neighborhood of a
submanifold
In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
of a
smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
is an
open set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line.
In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
around it resembling the
normal bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion).
Definition
Riemannian manifold
Let (M,g) be a Riemannian ...
.
The idea behind a tubular neighborhood can be explained in a simple example. Consider a
smooth curve in the plane without self-intersections. On each point on the
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
draw a line
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
to the curve. Unless the curve is straight, these lines will intersect among themselves in a rather complicated fashion. However, if one looks only in a narrow band around the curve, the portions of the lines in that band will not intersect, and will cover the entire band without gaps. This band is a tubular neighborhood.
In general, let ''S'' be a
submanifold
In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
of a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
''M'', and let ''N'' be the
normal bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion).
Definition
Riemannian manifold
Let (M,g) be a Riemannian ...
of ''S'' in ''M''. Here ''S'' plays the role of the curve and ''M'' the role of the plane containing the curve. Consider the natural map
:
which establishes a
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
correspondence between the
zero section
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
of ''N'' and the submanifold ''S'' of ''M''. An extension ''j'' of this map to the entire normal bundle ''N'' with values in ''M'' such that
is an open set in ''M'' and ''j'' is a
homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
between ''N'' and
is called a tubular neighbourhood.
Often one calls the open set
rather than ''j'' itself, a tubular neighbourhood of ''S'', it is assumed implicitly that the homeomorphism ''j'' mapping ''N'' to ''T'' exists.
Normal tube
A normal tube to a
smooth curve is a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
defined as the
union of all discs such that
* all the discs have the same fixed radius;
* the center of each disc lies on the
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
; and
* each disc lies in a plane
normal to the curve where the curve passes through that disc's center.
Formal definition
Let
be smooth manifolds. A tubular neighborhood of
in
is a
vector bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
together with a smooth map
such that
*
where
is the embedding
and
the zero section
* there exists some
and some
with
and
such that
is a
diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.
Definit ...
.
The normal bundle is a tubular neighborhood and because of the diffeomorphism condition in the second point, all tubular neighborhood have the same dimension, namely (the dimension of the vector bundle considered as a manifold is) that of
Generalizations
Generalizations of smooth manifolds yield generalizations of tubular neighborhoods, such as regular neighborhoods, or
spherical fibrations for
Poincaré space In algebraic topology, a Poincaré space is an ''n''-dimensional topological space with a distinguished element ''μ'' of its ''n''th homology group such that taking the cap product with an element of the ''k''th cohomology group yields an isomorphi ...
s.
These generalizations are used to produce analogs to the normal bundle, or rather to the
stable normal bundle
In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds a ...
, which are replacements for the tangent bundle (which does not admit a direct description for these spaces).
See also
* (aka offset curve)
*
References
*
*
*
{{commons category, Tubular neighborhood
Manifolds
Geometric topology
Smooth manifolds