
A trojan wave packet is a
wave packet
In physics, a wave packet (or wave train) is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of diff ...
that is nonstationary and nonspreading. It is part of an artificially created system that consists of a
nucleus
Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
* Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucl ...
and one or more electron wave packets, and that is highly excited under a continuous electromagnetic field.
The strong, polarized
electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classica ...
, holds or "traps" each electron wave packet in an intentionally selected orbit (energy shell). They derive their names from the
trojan asteroid
In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points and . Trojans can shar ...
s in the Sun–Jupiter system. Trojan asteroids orbit around the Sun in
Jupiter
Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandt ...
's orbit at its
Lagrangian equilibrium points L4 and L5, where they are phase-locked and protected from collision with each other, and this phenomenon is analogous to the way the wave packet is held together.
Concepts and research
The concept of the Trojan wave packet is derived from a flourishing area of physics which manipulates atoms and ions at the atomic level creating
ion traps
An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in phy ...
. Ion traps allow the manipulation of atoms and are used to create new states of matter including
ionic liquid
An ionic liquid (IL) is a salt in the liquid state. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as . While ordinary liquids such as water and gasoline are predominantly made of ...
s,
Wigner crystals and
Bose–Einstein condensate
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.67&n ...
s.
This ability to manipulate the quantum properties directly is key to the development of applicable
nanodevices
Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of ...
such as
quantum dots
Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
and microchip traps. In 2004 it was shown that it is possible to create a trap which is actually a single atom. Within the atom, the behavior of an electron can be manipulated.
During experiments in 2004 using lithium atoms in an excited state, researchers were able to localize an electron in a classical orbit for 15,000 orbits (900 ns). It was neither spreading nor dispersing. This "classical atom" was synthesized by "tethering" the electron using a microwave field to which its motion is phase locked. The phase lock of the electrons in this unique atomic system is, as mentioned above, analogous to the phase locked asteroids of Jupiter's orbit.
The techniques explored in this experiment are a solution to a problem that dates back to 1926. Physicists at that time realized that any initially localized wave packet will inevitably spread around the orbit of the electrons. Physicist noticed that "the wave equation is dispersive for the atomic Coulomb potential." In the 1980s several groups of researchers proved this to be true. The wave packets spread all the way around the orbits and coherently interfered with themselves. Recently the real world innovation realized with experiments such as Trojan wave packets, is localizing the wave packets, i.e., with no dispersion. Applying a polarized circular EM field, at microwave frequencies, synchronized with an electron wave packet, intentionally keeps the electron wave packets in a Lagrange type orbit.
The Trojan wave packet experiments built on previous work with lithium atoms in an excited state. These are atoms, which respond sensitively to electric and magnetic fields, have decay periods that are relatively prolonged, and electrons, which for all intents and purposes actually operate in classical orbits. The sensitivity to electric and magnetic fields is important because this allows control and response by the polarized microwave field.
Beyond single electron wave packets
The next logical step is to attempt to move from single electron wave packets to more than one electron
wave packet
In physics, a wave packet (or wave train) is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of diff ...
. This had already been accomplished in
barium
Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.
...
atoms, with two electron wave packets. These two were localized. However, eventually, these created
dispersion
Dispersion may refer to:
Economics and finance
* Dispersion (finance), a measure for the statistical distribution of portfolio returns
*Price dispersion, a variation in prices across sellers of the same item
* Wage dispersion, the amount of variat ...
after colliding near the nucleus. Another technique employed a nondispersive pair of electrons, but one of these had to have a localized orbit close to the nucleus. The nondispersive two-electron Trojan wave packets demonstration changes all that. These are the next step analogue of the one electron
Trojan wave packets – and designed for excited helium atoms.
As of July 2005, atoms with coherent, stable two-electron, nondispersing wave packets had been created. These are excited helium-like atoms, or
quantum dot
Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the q ...
helium (in
solid-state
Solid state, or solid matter, is one of the four fundamental states of matter.
Solid state may also refer to:
Electronics
* Solid-state electronics, circuits built of solid materials
* Solid state ionics, study of ionic conductors and their ...
applications), and are atomic (quantum) analogues to the
three body problem of Newton's
classical physics, which includes today's
astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the he ...
. In tandem, circularly
polarized electromagnetic and magnetic fields stabilize the two electron configuration in the
helium atom
A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with either one or two neutrons, depending on the isotope, held together b ...
or the quantum dot helium (with impurity center). The stability is maintained over a broad
spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of color ...
, and because of this, the configuration of two electron wave packets is considered to be truly nondispersive. For example, with the quantum dot helium, configured for confining electrons in two spatial dimensions, there now exists a variety of trojan wave packet configurations with two electrons, and as of 2005, only one in three dimensions. In 2012 an essential experimental step was undertaken not only generating but locking the Trojan wavepackets on adiabatically changed frequency and expanding the atoms as once predicted by Kalinski and
Eberly. It will allow
to create two electron
Langmuir Trojan wave packets in Helium by the sequential excitation in adiabatic Stark field
able to produce the circular one-electron aureola over first and then put the second electron in similar state.
See also
*
Atomic orbital
In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in an ...
*
Rydberg state
*
Soliton wave
*
Quantum scar
Quantum scarring refers to a phenomenon where the eigenstates of a classically chaotic quantum system have enhanced probability density around the paths of unstable classical periodic orbits. The instability of the periodic orbit is a decisive po ...
References
Further reading
Books
*
*
Journal articles
*
*
*
*{{Cite journal , last=Stroud , first=C. R., Jr. , date=2009 , title=An astronomical solution to an old quantum problem , journal=Physics , volume=2 , pages=19 , doi=10.1103/Physics.2.19 , bibcode = 2009PhyOJ...2...19S , doi-access=free
External links
Aharonov-Bohm Oscillations In "Trojan Electrons"Experimental creation of "Trojan Wave Packets" - Barry Dunnings's talk on ''youtube''Multi-electron extensions of "Trojan Wave Packets" - Matt Kalinski's talk (1) on ''youtube''Multi-electron extensions of "Trojan Wave Packets" - Matt Kalinski's talk (2) on ''youtube''http://www2.phy.ilstu.edu/ILP/movies/camovie/ATOM1312CONT.gif - accelerated counterintuitive relativistic spreading of the sharp Gaussian wave packet originally resembling the ground state into the ring in the hydrogen atom in the ultra-strong magnetic and the laser fields (animation)]
Materials science
Microelectronic and microelectromechanical systems
Microtechnology
Nanoelectronics
Nanotechnology
Quantum mechanics