HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a trigonometric substitution replaces a
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
for another expression. In
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.


Case I: Integrands containing ''a''2 − ''x''2

Let x = a \sin \theta, and use the identity 1-\sin^2 \theta = \cos^2 \theta.


Examples of Case I


Example 1

In the integral \int\frac, we may use x=a\sin \theta,\quad dx=a\cos\theta\, d\theta, \quad \theta=\arcsin\frac. Then, \begin \int\frac &= \int\frac \\ pt &= \int\frac \\ pt &= \int\frac \\ pt &= \int d\theta \\ pt &= \theta + C \\ pt &= \arcsin\frac+C. \end The above step requires that a > 0 and \cos \theta > 0. We can choose a to be the principal root of a^2, and impose the restriction -\pi /2 < \theta < \pi /2 by using the inverse sine function. For a definite integral, one must figure out how the bounds of integration change. For example, as x goes from 0 to a/2, then \sin \theta goes from 0 to 1/2, so \theta goes from 0 to \pi / 6. Then, \int_0^\frac=\int_0^ d\theta = \frac. Some care is needed when picking the bounds. Because integration above requires that -\pi /2 < \theta < \pi /2 , \theta can only go from 0 to \pi / 6. Neglecting this restriction, one might have picked \theta to go from \pi to 5\pi /6, which would have resulted in the negative of the actual value. Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives \int_^ \frac = \arcsin \left( \frac \right) \Biggl, _^ = \arcsin \left ( \frac\right) - \arcsin (0) = \frac as before.


Example 2

The integral \int\sqrt\,dx, may be evaluated by letting x=a\sin \theta,\, dx=a\cos\theta\, d\theta,\, \theta=\arcsin\dfrac, where a > 0 so that \sqrt=a, and -\pi/2 \le \theta \le \pi/2 by the range of arcsine, so that \cos \theta \ge 0 and \sqrt = \cos \theta. Then, \begin \int\sqrt\,dx &= \int\sqrt\,(a\cos\theta) \,d\theta \\ pt &= \int\sqrt\,(a\cos\theta) \,d\theta \\ pt &= \int\sqrt\,(a\cos\theta) \,d\theta \\ pt &= \int(a\cos\theta)(a\cos\theta) \,d\theta \\ pt &= a^2\int\cos^2\theta\,d\theta \\ pt &= a^2\int\left(\frac\right)\,d\theta \\ pt &= \frac \left(\theta+\frac\sin 2\theta \right) + C \\ pt &= \frac(\theta+\sin\theta\cos\theta) + C \\ pt &= \frac\left(\arcsin\frac+\frac\sqrt\right) + C \\ pt &= \frac\arcsin\frac+\frac\sqrt+C. \end For a definite integral, the bounds change once the substitution is performed and are determined using the equation \theta = \arcsin\dfrac, with values in the range -\pi/2 \le \theta \le \pi/2. Alternatively, apply the boundary terms directly to the formula for the antiderivative. For example, the definite integral \int_^1\sqrt\,dx, may be evaluated by substituting x = 2\sin\theta, \,dx = 2\cos\theta\,d\theta, with the bounds determined using \theta = \arcsin\dfrac. Because \arcsin(1/) = \pi/6 and \arcsin(-1/2) = -\pi/6, \begin \int_^1\sqrt\,dx &= \int_^\sqrt\,(2\cos\theta) \,d\theta \\ pt &= \int_^\sqrt\,(2\cos\theta) \,d\theta \\ pt &= \int_^\sqrt\,(2\cos\theta) \,d\theta \\ pt &= \int_^(2\cos\theta)(2\cos\theta) \,d\theta \\ pt &= 4\int_^\cos^2\theta\,d\theta \\ pt &= 4\int_^\left(\frac\right)\,d\theta \\ pt &= 2 \left theta+\frac \sin 2\theta \right_ = \theta+\sin 2\theta\Biggl , ^_ \\ pt &= \left(\frac+\sin\frac\right)-\left(-\frac+\sin\left(-\frac\right)\right) = \frac+\sqrt. \end On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields \begin \int_^1\sqrt\,dx &= \left \frac\arcsin\frac+\frac\sqrt \right^\\ pt&= \left( 2 \arcsin \frac + \frac\sqrt\right) - \left( 2 \arcsin \left(-\frac\right) + \frac\sqrt\right)\\ pt&= \left( 2 \cdot \frac + \frac\right) - \left( 2\cdot \left(-\frac\right) - \frac\right)\\ pt&= \frac + \sqrt \end as before.


Case II: Integrands containing ''a''2 + ''x''2

Let x = a \tan \theta, and use the identity 1+\tan^2 \theta = \sec^2 \theta.


Examples of Case II


Example 1

In the integral \int\frac we may write x=a\tan\theta,\quad dx=a\sec^2\theta\, d\theta, \quad \theta=\arctan\frac, so that the integral becomes \begin \int\frac &= \int\frac \\ pt &= \int\frac \\ pt &= \int\frac \\ pt &= \int\frac \\ pt &= \frac+C \\ pt &= \frac \arctan \frac + C, \end provided a \neq 0. For a definite integral, the bounds change once the substitution is performed and are determined using the equation \theta = \arctan\frac, with values in the range -\frac < \theta < \frac. Alternatively, apply the boundary terms directly to the formula for the antiderivative. For example, the definite integral \int_0^1\frac\, may be evaluated by substituting x = \tan\theta, \,dx = \sec^2\theta\,d\theta, with the bounds determined using \theta = \arctan x. Since \arctan 0 = 0 and \arctan 1 = \pi/4, \begin \int_0^1\frac &= 4\int_0^1\frac \\ pt &= 4\int_0^\frac \\ pt &= 4\int_0^\frac \\ pt &= 4\int_0^d\theta \\ pt &= (4\theta)\Bigg, ^_0 = 4 \left (\frac - 0 \right) = \pi. \end Meanwhile, direct application of the boundary terms to the formula for the antiderivative yields \begin \int_0^1\frac\, &= 4\int_0^1\frac \\ pt&= 4\left frac \arctan \frac \right1_0 \\ pt&= 4(\arctan x)\Bigg, ^1_0 \\ pt&= 4(\arctan 1 - \arctan 0) \\ pt&= 4 \left (\frac - 0 \right) = \pi, \end same as before.


Example 2

The integral \int\sqrt\, may be evaluated by letting x=a\tan\theta,\, dx=a\sec^2\theta\, d\theta, \, \theta=\arctan\frac, where a > 0 so that \sqrt=a, and -\frac<\theta<\frac by the range of arctangent, so that \sec \theta > 0 and \sqrt = \sec \theta. Then, \begin \int\sqrt\,dx &= \int\sqrt\,(a \sec^2\theta)\, d\theta \\ pt &= \int\sqrt\,(a \sec^2\theta)\, d\theta \\ pt &= \int\sqrt\,(a \sec^2\theta)\, d\theta \\ pt &= \int(a \sec\theta)(a \sec^2\theta)\, d\theta \\ pt &= a^2\int \sec^3\theta\, d\theta. \\ pt \end The integral of secant cubed may be evaluated using
integration by parts In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivati ...
. As a result, \begin \int\sqrt\,dx &= \frac(\sec\theta \tan\theta + \ln, \sec\theta+\tan\theta, )+C \\ pt &= \frac\left(\sqrt\cdot\frac + \ln\left, \sqrt+\frac\\right)+C \\ pt &= \frac\left(x\sqrt + a^2\ln\left, \frac\\right)+C. \end


Case III: Integrands containing ''x''2 − ''a''2

Let x = a \sec \theta, and use the identity \sec^2 \theta -1 = \tan^2 \theta.


Examples of Case III

Integrals such as \int\frac can also be evaluated by partial fractions rather than trigonometric substitutions. However, the integral \int\sqrt\, dx cannot. In this case, an appropriate substitution is: x = a \sec\theta,\, dx = a \sec\theta\tan\theta\, d\theta, \, \theta = \arcsec\frac, where a > 0 so that \sqrt=a, and 0 \le \theta < \frac by assuming x > 0, so that \tan \theta \ge 0 and \sqrt = \tan \theta. Then, \begin \int\sqrt\, dx &= \int\sqrt \cdot a \sec\theta\tan\theta\, d\theta \\ &= \int\sqrt \cdot a \sec\theta\tan\theta\, d\theta \\ &= \int\sqrt \cdot a \sec\theta\tan\theta\, d\theta \\ &= \int a^2 \sec\theta\tan^2\theta\, d\theta \\ &= a^2 \int (\sec\theta)(\sec^2\theta - 1)\, d\theta \\ &= a^2 \int (\sec^3\theta - \sec\theta)\, d\theta. \end One may evaluate the integral of the secant function by multiplying the numerator and denominator by ( \sec \theta + \tan \theta) and the integral of secant cubed by parts. As a result, \begin \int\sqrt\,dx &= \frac(\sec\theta \tan\theta + \ln, \sec\theta+\tan\theta, )-a^2\ln, \sec\theta+\tan\theta, +C \\ pt &= \frac(\sec\theta \tan\theta - \ln, \sec\theta+\tan\theta, )+C \\ pt &= \frac\left(\frac\cdot\sqrt - \ln\left, \frac+\sqrt\\right)+C \\ pt &= \frac\left(x\sqrt - a^2\ln\left, \frac\\right)+C. \end When \frac < \theta \le \pi, which happens when x < 0 given the range of arcsecant, \tan \theta \le 0, meaning \sqrt = -\tan \theta instead in that case.


Substitutions that eliminate trigonometric functions

Substitution can be used to remove trigonometric functions. For instance, \begin \int f(\sin(x), \cos(x))\, dx &=\int\frac1 f\left(u,\pm\sqrt\right)\, du && u=\sin (x) \\ pt\int f(\sin(x), \cos(x))\, dx &=\int\frac f\left(\pm\sqrt,u\right)\, du && u=\cos (x) \\ pt\int f(\sin(x), \cos(x))\, dx &=\int\frac2 f \left(\frac,\frac\right)\, du && u=\tan\left (\frac \right ) \\ pt\end The last substitution is known as the Weierstrass substitution, which makes use of tangent half-angle formulas. For example, \begin \int\frac\, dx &= \int\frac2\frac\, du = \int (1-u^2)(1+u^2)\, du \\&= \int (1-u^4)\,du = u - \frac + C = \tan \frac - \frac \tan^5 \frac + C. \end


Hyperbolic substitution

Substitutions of
hyperbolic function In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the ...
s can also be used to simplify integrals. For example, to integrate 1/\sqrt, introduce the substitution x=a\sinh (and hence dx=a\cosh u \,du), then use the identity \cosh^2 (x) - \sinh^2 (x) = 1 to find: \begin \int \frac &= \int \frac \\ pt&=\int \frac \\ pt&=\int \frac \,du \\ pt&=u+C \\ pt&=\sinh^ + C. \end If desired, this result may be further transformed using other identities, such as using the relation \sinh^ = \operatorname = \ln(z + \sqrt): \begin \sinh^ + C &=\ln\left(\frac + \sqrt\,\right) + C \\ pt&=\ln\left(\frac\,\right) + C. \end


See also

*
Integration by substitution In calculus, integration by substitution, also known as ''u''-substitution, reverse chain rule or change of variables, is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and c ...
* Weierstrass substitution * Euler substitution


References

{{Integrals Integral calculus Trigonometry