Transparent Ceramics
   HOME

TheInfoList



OR:

Many
ceramic materials A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelai ...
, both glassy and crystalline, have found use as
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
ly
transparent materials In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable light scattering by particles, scattering of light. On a macroscopic scale ...
in various forms from bulk solid-state components to high surface area forms such as thin films, coatings, and fibers. Such devices have found widespread use for various applications in the electro-optical field including:
optical fibers An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
for guided lightwave transmission, optical
switches In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type o ...
, laser
amplifiers An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It is a two-port electronic circuit that uses electric power from a power suppl ...
and
lenses A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
, hosts for solid-state
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s and optical window materials for gas lasers, and infrared (IR) heat seeking devices for
missile guidance Missile guidance refers to a variety of methods of guiding a missile or a guided bomb to its intended target. The missile's target accuracy is a critical factor for its effectiveness. Guidance systems improve missile accuracy by improving its P ...
systems and IR night vision. Harris, D.C. (2009) "Materials for Infrared Windows and Domes: Properties and Performance", SPIE PRESS Monograph, Vol. PM70 (Int. Society of Optical Engineers, Bellingham WA) In commercial and general knowledge domains, it is commonly accepted that transparent ceramics or ceramic glass are varieties of strengthened glass, such as those used for the screen glass on an iPhone. While single-crystalline ceramics may be largely defect-free (particularly within the spatial scale of the incident light wave), optical transparency in
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. S ...
materials is limited by the amount of light that is scattered by their microstructural features. The amount of
light scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radia ...
therefore depends on the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of the incident radiation, or light. For example, since
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
has a wavelength scale on the order of hundreds of
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
s, scattering centers will have dimensions on a similar spatial scale. Most ceramic materials, such as
alumina Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
and its compounds, are formed from fine powders, yielding a fine grained polycrystalline
microstructure Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymer ...
that is filled with scattering centers comparable to the wavelength of
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
. Thus, they are generally opaque as opposed to
transparent materials In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable light scattering by particles, scattering of light. On a macroscopic scale ...
. Recent nanoscale technology, however, has made possible the production of (poly)crystalline transparent ceramics such as alumina Al2O3,
yttrium aluminium garnet Yttrium aluminium garnet (YAG, Yttrium, Y3Aluminium, Al5Oxygen, O12) is a synthetic crystalline material of the garnet group. It is a Crystal system, cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a Crystal system, ...
(YAG), and neodymium-doped Nd:YAG.


Introduction

Transparent ceramics have recently acquired a high degree of interest and notoriety. Basic applications include lasers and cutting tools, transparent armor windows, night vision devices (NVD), and nose cones for heat seeking missiles. Currently available infrared (IR) transparent materials typically exhibit a trade-off between optical performance and mechanical strength. For example,
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
(crystalline alumina) is very strong, but lacks full transparency throughout the 3–5 micrometer mid-IR range.
Yttria Yttrium oxide, also known as yttria, is Y2 O3. It is an air-stable, white solid substance. The thermal conductivity of yttrium oxide is 27 W/(m·K). Applications Phosphors Yttrium oxide is widely used to make Eu:YVO4 and Eu:Y2O3 phosphors that ...
is fully transparent from 3–5 micrometers, but lacks sufficient strength, hardness, and thermal shock resistance for high-performance aerospace applications. Not surprisingly, a combination of these two materials in the form of the yttria-alumina garnet (
YAG YAG, YaG, YaÄŸ, or yag can refer to: * Yttrium aluminium garnet Yttrium aluminium garnet (YAG, Yttrium, Y3Aluminium, Al5Oxygen, O12) is a synthetic crystalline material of the garnet group. It is a Crystal system, cubic yttrium aluminium oxide ...
) has proven to be one of the top performers in the field. In 1961,
General Electric General Electric Company (GE) was an American Multinational corporation, multinational Conglomerate (company), conglomerate founded in 1892, incorporated in the New York (state), state of New York and headquartered in Boston. Over the year ...
began selling transparent alumina Lucalox bulbs. In 1966, GE announced a ceramic "transparent as glass", called Yttralox. In 2004, Anatoly Rosenflanz and colleagues at 3M used a "flame-spray" technique to alloy
aluminium oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several Aluminium oxide (compounds), aluminium oxides, and specifically identified as alum ...
(or alumina) with rare-earth metal oxides in order to produce high strength
glass-ceramic Glass-ceramics are polycrystalline materials produced through controlled crystallization of base glass, producing a fine uniform dispersion of crystals throughout the bulk material. Crystallization is accomplished by subjecting suitable glasses t ...
s with good optical properties. The method avoids many of the problems encountered in conventional glass forming and may be extensible to other oxides. This goal has been readily accomplished and amply demonstrated in laboratories and research facilities worldwide using the emerging chemical processing methods encompassed by the methods of sol–gel chemistry and
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
. Barbaran, J.H., et al., "Synthesis of highly doped Nd:YAG powder by SOL–GEL method", Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 8, p. 87 (2005) Many ceramic materials, both glassy and crystalline, have found use as hosts for solid-state lasers and as optical window materials for gas lasers. The first working laser was made by Theodore H. Maiman in 1960 at
Hughes Research Laboratories Hughes may refer to: People * Hughes (given name), including a list of people with the given name * Hughes (surname), including a list of people with the surname Places Antarctica * Hughes Range (Antarctica), Ross Dependency * Mount Hugh ...
in Malibu, who had the edge on other research teams led by Charles H. Townes at
Columbia University Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
,
Arthur Schawlow Arthur Leonard Schawlow (May 5, 1921 – April 28, 1999) was an American physicist who, along with Charles Townes, developed the theoretical basis for laser science. His central insight was the use of two mirrors as the resonant cavity to take m ...
at
Bell Labs Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
, and Gould at TRG (Technical Research Group). Maiman used a solid-state light-pumped synthetic
ruby Ruby is a pinkish-red-to-blood-red-colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sapph ...
to produce red laser light at a wavelength of 694 nanometers (nm). Synthethic ruby lasers are still in use. Both sapphires and rubies are
corundum Corundum is a crystalline form of aluminium oxide () typically containing traces of iron, titanium, vanadium, and chromium. It is a rock (geology), rock-forming mineral. It is a naturally transparency and translucency, transparent material, but ...
, a crystalline form of aluminium oxide (Al2O3).


Crystals

Ruby lasers consist of single-crystal sapphire alumina (Al2O3) rods doped with a small concentration of chromium Cr, typically in the range of 0.05%. The end faces are highly polished with a planar and parallel configuration. Neodymium-doped YAG (Nd:YAG) has proven to be one of the best solid-state laser materials. Its indisputable dominance in a broad variety of laser applications is determined by a combination of high emission cross section with long spontaneous emission lifetime, high damage threshold, mechanical strength, thermal conductivity, and low thermal beam distortion. The fact that the Czochralski crystal growth of Nd:YAG is a matured, highly reproducible and relatively simple technological procedure adds significantly to the value of the material. Nd:YAG lasers are used in manufacturing for engraving, etching, or marking a variety of metals and plastics. They are extensively used in manufacturing for cutting and welding steel and various alloys. For automotive applications (cutting and welding steel) the power levels are typically 1–5 kW. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, p. 690 (Wiley-Interscience, 2nd Edition, 2006) In addition, Nd:YAG lasers are used in
ophthalmology Ophthalmology (, ) is the branch of medicine that deals with the diagnosis, treatment, and surgery of eye diseases and disorders. An ophthalmologist is a physician who undergoes subspecialty training in medical and surgical eye care. Following a ...
to correct posterior capsular opacification, a condition that may occur after
cataract A cataract is a cloudy area in the lens (anatomy), lens of the eye that leads to a visual impairment, decrease in vision of the eye. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colours, blurry or ...
surgery, and for peripheral
iridotomy An iridectomy, also known as a surgical iridectomy or corectomy, is the surgical removal of part of the iris.Cline D; Hofstetter HW; Griffin JR. ''Dictionary of Visual Science''. 4th ed. Butterworth-Heinemann, Boston 1997. acute angle-closure glaucoma Glaucoma is a group of eye diseases that can lead to damage of the optic nerve. The optic nerve transmits visual information from the eye to the brain. Glaucoma may cause vision loss if left untreated. It has been called the "silent thief of ...
, where it has superseded surgical iridectomy. Frequency-doubled Nd:YAG lasers (wavelength 532 nm) are used for pan-retinal photocoagulation in patients with
diabetic retinopathy Diabetic retinopathy (also known as diabetic eye disease) is a medical condition in which damage occurs to the retina due to diabetes. It is a leading cause of blindness in developed countries and one of the lead causes of sight loss in the wor ...
. In
oncology Oncology is a branch of medicine that deals with the study, treatment, diagnosis, and prevention of cancer. A medical professional who practices oncology is an ''oncologist''. The name's Etymology, etymological origin is the Greek word ὄγ ...
, Nd:YAG lasers can be used to remove skin
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
s. These lasers are also used extensively in the field of cosmetic medicine for
laser hair removal Laser hair removal is the process of hair removal by means of exposure to pulses of laser light that destroy the hair follicle. It had been performed experimentally for about twenty years before becoming commercially available in 1995–1996. One ...
and the treatment of minor
vascular Vascular can refer to: * blood vessels, the vascular system in animals * vascular tissue Vascular tissue is a complex transporting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue ...
defects such as
spider veins Telangiectasias (), also known as spider veins, are small dilated blood vessels that can occur near the surface of the skin or mucous membranes, measuring between 0.5 and 1 millimeter in diameter. These dilated blood vessels can develop anywhere ...
on the face and legs. Recently used for dissecting cellulitis, a rare skin disease usually occurring on the scalp. Using
hysteroscopy Hysteroscopy is the inspection of the uterine cavity by endoscopy with access through the cervix. It allows for the diagnosis of intrauterine pathology and serves as a method for surgical intervention (operative hysteroscopy). Hysteroscope A hyst ...
in the field of gynecology, the Nd:YAG laser has been used for removal of uterine septa within the inside of the uterus. In dentistry, Nd:YAG lasers are used for
soft tissue Soft tissue connective tissue, connects and surrounds or supports internal organs and bones, and includes muscle, tendons, ligaments, Adipose tissue, fat, fibrous tissue, Lymphatic vessel, lymph and blood vessels, fasciae, and synovial membranes. ...
surgeries Surgery is a medical specialty that uses manual and instrumental techniques to diagnose or treat pathological conditions (e.g., trauma, disease, injury, malignancy), to alter bodily functions (e.g., malabsorption created by bariatric surgery ...
in the
oral cavity A mouth also referred to as the oral is the body orifice through which many animals ingest food and vocalize. The body cavity immediately behind the mouth opening, known as the oral cavity (or in Latin), is also the first part of the alime ...
.


Glasses

Glasses (non-crystalline ceramics) also are used widely as host materials for lasers. Relative to crystalline lasers, they offer improved flexibility in size and shape and may be readily manufactured as large, homogeneous, isotropic solids with excellent optical properties. The indices of refraction of glass laser hosts may be varied between approximately 1.5 and 2.0, and both the temperature coefficient of ''n'' and the strain-optical coefficient may be tailored by altering the chemical composition. Glasses have lower thermal conductivities than the alumina or YAG, however, which imposes limitations on their use in continuous and high repetition-rate applications. The principal differences between the behavior of glass and crystalline ceramic laser host materials are associated with the greater variation in the local environment of lasing ions in amorphous solids. This leads to a broadening of the fluorescent levels in glasses. For example, the width of the Nd3+ emission in YAG is ~ 10 angstroms as compared to ~ 300 angstroms in typical oxide glasses. The broadened fluorescent lines in glasses make it more difficult to obtain continuous wave laser operation (CW), relative to the same lasing ions in crystalline solid laser hosts. Several glasses are used in transparent armor, such as normal plate glass (soda-lime-silica), borosilicate glass, and fused silica. Plate glass has been the most common glass used due to its low cost. But greater requirements for the optical properties and ballistic performance have necessitated the development of new materials. Chemical or thermal treatments can increase the strength of glasses, and the controlled crystallization of certain glass compositions can produce optical quality glass-ceramics. Alstom Grid Ltd. currently produces a lithium di-silicate based glass-ceramic known as TransArm, for use in transparent armor systems. It has all the workability of an amorphous glass, but upon recrystallization it demonstrates properties similar to a crystalline ceramic. Vycor is 96% fused silica glass, which is crystal clear, lightweight and high strength. One advantage of these types of materials is that they can be produced in large sheets and other curved shapes. Patel, P.J., et al., Transparent Armor, The AMPTIAC Newsletter, Advanced Materials and Processes Technology, Vol. 4 (Fall, 2000) Sands, J.M., et al., (ARL) and Boyce, M.C. (MIT Mech. Engr.), Protecting the Future Force: Transparent Materials Safeguard the Army's Vision, Army Materials Research: Transforming Land Combat Through New Technologies, AMPTIAC Quarterly, Vol. 8 (2004)


Nanomaterials

It has been shown fairly recently that laser elements (amplifiers, switches, ion hosts, etc.) made from fine-grained ceramic nanomaterials—produced by the low temperature sintering of high purity nanoparticles and powders—can be produced at a relatively low cost. These components are free of internal stress or intrinsic birefringence, and allow relatively large doping levels or optimized custom-designed doping profiles. This highlights the use of ceramic nanomaterials as being particularly important for high-energy laser elements and applications. Primary scattering centers in polycrystalline nanomaterials—made from the sintering of high purity nanoparticles and powders—include microstructural defects such as residual
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
and
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional crystallographic defect, defects in the crystal structure, and tend to decrease the ...
(see
Transparent materials In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable light scattering by particles, scattering of light. On a macroscopic scale ...
). Thus, opacity partly results from the incoherent scattering of light at internal surfaces and
interfaces Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Inter ...
. In addition to
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
, most of the interfaces or internal surfaces in ceramic nanomaterials are in the form of
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional crystallographic defect, defects in the crystal structure, and tend to decrease the ...
which separate nanoscale regions of
crystalline A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macrosc ...
order. Moreover, when the size of the scattering center (or grain boundary) is reduced well below the size of the wavelength of the light being scattered, the light scattering no longer occurs to any significant extent. In the processing of high performance ceramic nanomaterials with superior opto-mechanical properties under adverse conditions, the size of the crystalline grains is determined largely by the size of the crystalline particles present in the raw material during the synthesis or formation of the object. Thus a reduction of the original particle size well below the wavelength of visible light (~ 0.5 Î¼m or 500 nm) eliminates much of the light scattering, resulting in a translucent or even
transparent material In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable scattering of light. On a macroscopic scale (one in which the dimensions a ...
. Furthermore, results indicate that microscopic pores in sintered ceramic nanomaterials, mainly trapped at the junctions of microcrystalline grains, cause light to scatter and prevented true transparency. It has been observed that the total volume fraction of these nanoscale pores (both intergranular and intragranular porosity) must be less than 1% for high-quality optical transmission, i.e. the density has to be 99.99% of the theoretical crystalline density.


Lasers


Nd:YAG

For example, a 1.46 kW Nd:YAG laser has been demonstrated by Konoshima Chemical Co. in Japan. In addition, Livermore researchers realized that these fine-grained ceramic nanomaterials might greatly benefit high-powered lasers used in the National Ignition Facility (NIF) Programs Directorate. In particular, a Livermore research team began to acquire advanced transparent nanomaterials from Konoshima to determine if they could meet the optical requirements needed for Livermore's Solid-State Heat Capacity Laser (SSHCL). Livermore researchers have also been testing applications of these materials for applications such as advanced drivers for laser-driven fusion power plants.Transparent Ceramics Spark Laser Technology
Lawrence Livermore National Laboratories (S&TR, 2006)
Assisted by several workers from the NIF, the Livermore team has produced 15 mm diameter samples of transparent Nd:YAG from nanoscale particles and powders, and determined the most important parameters affecting their quality. In these objects, the team largely followed the Japanese production and processing methodologies, and used an in house furnace to vacuum sinter the nanopowders. All specimens were then sent out for hot isostatic pressing (HIP). Finally, the components were returned to Livermore for coating and testing, with results indicating exceptional optical quality and properties. One Japanese/East Indian consortium has focused specifically on the spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG nanomaterials for laser applications. Their materials were synthesized using vacuum sintering techniques. The spectroscopic studies suggest overall improvement in absorption and emission and reduction in scattering loss.
Scanning electron microscope A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that ...
and
transmission electron microscope Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a gr ...
observations revealed an excellent optical quality with low pore volume and narrow grain boundary width. Fluorescence and Raman measurements reveal that the Nd3+ doped YAG nanomaterial is comparable in quality to its single-crystal counterpart in both its radiative and non-radiative properties. Individual Stark levels are obtained from the absorption and fluorescence spectra and are analyzed in order to identify the stimulated emission channels possible in the material. Laser performance studies favor the use of high dopant concentration in the design of an efficient microchip laser. With 4 at% dopant, the group obtained a slope efficiency of 40%. High-power laser experiments yield an optical-to-optical conversion efficiency of 30% for Nd (0.6 at%) YAG nanomaterial as compared to 34% for an Nd (0.6 at%) YAG single crystal. Optical gain measurements conducted in these materials also show values comparable to single crystal, supporting the contention that these materials could be suitable substitutes to single crystals in solid-state laser applications.


Yttria, Y2O3

The initial work in developing transparent yttrium oxide nanomaterials was carried out by General Electric in the 1960s. In 1966, a transparent ceramic,
Yttralox Yttralox is a Transparent ceramics, transparent ceramic consisting of yttria (Y2O3) containing approximately 10% thorium dioxide (ThO2). It was one of the first transparent ceramics produced, and was invented in 1966 by Richard C. Anderson at the ...
, was invented by Dr. Richard C. Anderson at the
General Electric Research Laboratory General Electric Research Laboratory was the first industrial research facility in the United States. Established in 1900, the lab was home to the early technological breakthroughs of General Electric and created a research and development environ ...
, with further work at GE's Metallurgy and Ceramics Laboratory by Drs. Paul J. Jorgensen, Joseph H. Rosolowski, and Douglas St. Pierre. Yttralox is "transparent as glass", has a melting point twice as high, and transmits frequencies in the near infrared band as well as visible light. Further development of yttrium ceramic nanomaterials was carried out by General Electric in the 1970s in Schenectady and Cleveland, motivated by lighting and ceramic laser applications. Yttralox, transparent yttrium oxide Y2O3 containing ~ 10% thorium oxide (ThO2) was fabricated by Greskovich and Woods. The additive served to control grain growth during densification, so that porosity remained on grain boundaries and not trapped inside grains where it would be quite difficult to eliminate during the initial stages of sintering. Typically, as polycrystalline ceramics densify during heat treatment, grains grow in size while the remaining porosity decreases both in volume fraction and in size. Optically transparent ceramics must be virtually pore-free. GE's transparent Yttralox was followed by GTE's lanthana-doped yttria with similar level of additive. Both of these materials required extended firing times at temperatures above 2000 Â°C. La2O3 – doped Y2O3 is of interest for infrared (IR) applications because it is one of the longest wavelength transmitting oxides. It is refractory with a melting point of 2430 Â°C and has a moderate coefficient of thermal expansion. The thermal shock and erosion resistance is considered to be intermediate among the oxides, but outstanding compared to non-oxide IR transmitting materials. A major consideration is the low emissivity of yttria, which limits background radiation upon heating. It is also known that the phonon edge gradually moves to shorter wavelengths as a material is heated. In addition, yttria itself, Y2O3 has been clearly identified as a prospective
solid-state laser A solid-state laser is a laser that uses a active laser medium, gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as ...
material. In particular, lasers with
ytterbium Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthani ...
as
dopant A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optics, optical properties. The amount of dopant is typically very low compared to the material b ...
allow the efficient operation both in cw operation and in pulsed regimes. At high concentration of excitations (of order of 1%) and poor cooling, the quenching of emission at laser frequency and avalanche broadband emission takes place.


Future

The Livermore team is also exploring new ways to chemically synthesize the initial nanopowders. Borrowing on expertise developed in CMS over the past 5 years, the team is synthesizing nanopowders based on sol–gel processing, and then sintering them accordingly in order to obtain the solid-state laser components. Another technique being tested utilizes a combustion process in order to generate the powders by burning an organic solid containing yttrium, aluminum, and neodymium. The smoke is then collected, which consists of spherical nanoparticles. The Livermore team is also exploring new forming techniques (e.g. extrusion molding) which have the capacity to create more diverse, and possibly more complicated, shapes. These include shells and tubes for improved coupling to the pump light and for more efficient heat transfer. In addition, different materials can be co-extruded and then sintered into a monolithic transparent solid. An amplifier slab can be formed so that part of the structure acts in guided lightwave transmission in order to focus pump light from laser diodes into regions with a high concentration of dopant ions near the slab center. In general, nanomaterials promise to greatly expand the availability of low-cost, high-end laser components in much larger sizes than would be possible with traditional single crystalline ceramics. Many classes of laser designs could benefit from nanomaterial-based laser structures such as amplifies with built-in edge claddings. Nanomaterials could also provide more robust and compact designs for high-peak power, fusion-class lasers for stockpile stewardship, as well as high-average-power lasers for global theater ICBM missile defense systems (e.g.
Strategic Defense Initiative The Strategic Defense Initiative (SDI) was a proposed missile defense system intended to protect the United States from attack by ballistic nuclear missiles. The program was announced in 1983, by President Ronald Reagan. Reagan called for a ...
SDI, or more recently th
Missile Defense Agency


Night vision

A
night vision device A night-vision device (NVD), also known as a night optical/observation device (NOD) or night-vision goggle (NVG), is an optoelectronic device that allows visualization of images in low levels of light, improving the user's night vision. The ...
(NVD) is an
optical instrument An optical instrument is a device that processes light waves (or photons), either to enhance an image for viewing or to analyze and determine their characteristic properties. Common examples include periscopes, microscopes, telescopes, and camera ...
that allows images to be produced in levels of light approaching total darkness. They are most often used by the military and
law enforcement Law enforcement is the activity of some members of the government or other social institutions who act in an organized manner to enforce the law by investigating, deterring, rehabilitating, or punishing people who violate the rules and norms gove ...
agencies, but are available to
civilian A civilian is a person who is not a member of an armed force. It is war crime, illegal under the law of armed conflict to target civilians with military attacks, along with numerous other considerations for civilians during times of war. If a civi ...
users. Night vision devices were first used in World War II, and came into wide use during the
Vietnam War The Vietnam War (1 November 1955 – 30 April 1975) was an armed conflict in Vietnam, Laos, and Cambodia fought between North Vietnam (Democratic Republic of Vietnam) and South Vietnam (Republic of Vietnam) and their allies. North Vietnam w ...
. The technology has evolved greatly since their introduction, leading to several "generations" of night vision equipment with performance increasing and price decreasing. The
United States Air Force The United States Air Force (USAF) is the Air force, air service branch of the United States Department of Defense. It is one of the six United States Armed Forces and one of the eight uniformed services of the United States. Tracing its ori ...
is experimenting with Panoramic Night Vision Goggles (PNVGs) which double the user's
field of view The field of view (FOV) is the angle, angular extent of the observable world that is visual perception, seen at any given moment. In the case of optical instruments or sensors, it is a solid angle through which a detector is sensitive to elec ...
to approximately 95 degrees by using four 16 mm image intensifiers tubes, rather than the more standard two 18 mm tubes. Thermal images are visual displays of the amount of infrared (IR) energy emitted, transmitted, and reflected by an object. Because there are multiple sources of the infrared energy, it is difficult to get an accurate temperature of an object using this method. A thermal imaging camera is capable of performing algorithms to interpret that data and build an image. Although the image shows the viewer an approximation of the temperature at which the object is operating, the camera is using multiple sources of data based on the areas surrounding the object to determine that value rather than detecting the temperature. Night vision infrared devices image in the near-infrared, just beyond the visual spectrum, and can see emitted or reflected near-infrared in complete visual darkness. All objects above the
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 Â° ...
temperature (0  K) emit
infrared radiation Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
. Hence, an excellent way to measure thermal variations is to use an
thermographic Infrared thermography (IRT), thermal video or thermal imaging, is a process where a Thermographic camera, thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are exa ...
device, usually a
focal plane array A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purpos ...
(FPA)
infrared camera Infrared thermography (IRT), thermal video or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared im ...
capable of detecting
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
in the mid (3 to 5 Î¼m) and long (7 to 14 Î¼m) wave infrared bands, denoted as MWIR and LWIR, corresponding to two of the high transmittance
infrared window The infrared atmospheric window is an atmospheric window in the infrared spectrum where there is relatively little absorption of terrestrial thermal radiation by atmospheric gases. The window plays an important role in the atmospheric greenhouse ...
s. Abnormal temperature profiles at the surface of an object are an indication of a potential problem. Thermal cameras detect
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
in the infrared range of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
(roughly 900–14,000
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
s or 0.9–14
μm The micrometre (Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a unit of length in the International System ...
) and produce images of that radiation, called ''thermograms''. Since infrared radiation is emitted by all objects near
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
, according to the
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is ...
radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature. Therefore, thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds; humans and other
warm-blooded Warm-blooded is a term referring to animal species whose bodies maintain a temperature higher than that of their environment. In particular, homeothermic species (including birds and mammals) maintain a stable body temperature by regulating ...
animals become easily visible against the environment, day or night. As a result, thermography is particularly useful to the military and to
security services Security Service or security service may refer to: Government * Security agency, a nation's institution for intelligence gathering * List of security agencies (MI5, NSA, KGB, etc.) * (SD), Nazi German agency which translates as "Security Servi ...
.


Thermography

In
thermographic Infrared thermography (IRT), thermal video or thermal imaging, is a process where a Thermographic camera, thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are exa ...
imaging, infrared radiation with wavelengths between 8–13 micrometers strikes the detector material, heating it, and thus changing its electrical resistance. This resistance change is measured and processed into temperatures which can be used to create an image. Unlike other types of infrared detecting equipment,
microbolometers A microbolometer is a specific type of bolometer used as a detector in a thermal camera. Infrared radiation with wavelengths between 7.5–14 μm strikes the detector material, heating it, and thus changing its electrical resistance. This resista ...
utilizing a transparent ceramic detector do not require cooling. Thus, a microbolometer is essentially an uncooled thermal sensor.Kumar, R.T. Rajendra, et al., ''Room temperature deposited vanadium oxide thin films for uncooled infrared detectors'', Materials Research Bulletin, Vol. 38, p. 1235 (2003) The material used in the detector must demonstrate large changes in resistance as a result of minute changes in temperature. As the material is heated, due to the incoming infrared radiation, the resistance of the material decreases. This is related to the material's
temperature coefficient of resistance A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property ''R'' that changes when the temperature changes by ''dT'', the temperature coefficient α is def ...
(TCR) specifically its
negative temperature coefficient A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property ''R'' that changes when the temperature changes by ''dT'', the temperature coefficient α is def ...
. Industry currently manufactures microbolometers that contain materials with TCRs near −2%.


VO2 and V2O5

The most commonly used ceramic material in IR radiation
microbolometers A microbolometer is a specific type of bolometer used as a detector in a thermal camera. Infrared radiation with wavelengths between 7.5–14 μm strikes the detector material, heating it, and thus changing its electrical resistance. This resista ...
is vanadium oxide. The various crystalline forms of vanadium oxide include both VO2 and V2O5. Deposition at high temperatures and performing post- annealing allows for the production of thin films of these crystalline compounds with superior properties, which may be easily integrated into the fabrication process. VO2 has low resistance but undergoes a metal-insulator phase change near 67 Â°C and also has a lower TCR value. On the other hand, V2O5 exhibits high resistance and also high TCR. Other IR transparent ceramic materials that have been investigated include doped forms of CuO, MnO and SiO.


Missiles

Many ceramic nanomaterials of interest for transparent armor solutions are also used for electromagnetic (EM) windows. These applications include radomes, IR domes, sensor protection, and multi-spectral windows. Optical properties of the materials used for these applications are critical, as the transmission window and related cut-offs (UV – IR) control the spectral bandwidth over which the window is operational. Not only must these materials possess abrasion resistance and strength properties common of most armor applications, but due to the extreme temperatures associated with the environment of military aircraft and missiles, they must also possess excellent thermal stability.
Thermal radiation Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electro ...
is electromagnetic radiation emitted from the surface of an object which is due to the object's
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
.
Infrared homing Infrared homing is a Missile guidance#Passive homing, passive weapon guidance system which uses the infrared (IR) light emission from a target to track and follow it seamlessly. Missiles which use infrared seeking are often referred to as "he ...
refers to a passive missile guidance system which uses the
emission Emission may refer to: Chemical products * Emission of air pollutants, notably: ** Flue gas, gas exiting to the atmosphere via a flue ** Exhaust gas, flue gas generated by fuel combustion ** Emission of greenhouse gases, which absorb and emit rad ...
from a target of electromagnetic radiation in the infrared part of the spectrum to track it. Missiles that use infrared seeking are often referred to as "heat-seekers", since infrared is just below the visible spectrum of light in frequency and is radiated strongly by hot bodies. Many objects such as people, vehicle engines and aircraft generate and retain heat, and as such, are especially visible in the infrared wavelengths of light compared to objects in the background.


Sapphire

The current material of choice for high-speed infrared-guided missile domes is single-crystal
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
. The optical transmission of sapphire does not extend to cover the entire mid-infrared range (3–5 Î¼m), but starts to drop off at wavelengths greater than approximately 4.5 Î¼m at room temperature. While the strength of sapphire is better than that of other available mid-range infrared dome materials at room temperature, it weakens above ~600 Â°C. Limitations to larger area sapphires are often business related, in that larger induction furnaces and costly tooling dies are necessary in order to exceed current fabrication limits. However, as an industry, sapphire producers have remained competitive in the face of coating-hardened glass and new ceramic nanomaterials, and still managed to offer high performance and an expanded market.


Yttria, Y2O3

Alternative materials, such as
yttrium oxide Yttrium oxide may refer to: * Yttrium(II) oxide Yttrium(II) oxide or yttrium monoxide is a chemical compound with the formula YO. This chemical compound was first created in its solid form by pulsed laser deposition, using yttrium(III) oxide as ...
, offer better optical performance, but inferior mechanical durability. Future high-speed infrared-guided missiles will require new domes that are substantially more durable than those in use today, while still retaining maximum transparency across a wide wavelength range. A long-standing trade-off exists between optical bandpass and mechanical durability within the current collection of single-phase infrared transmitting materials, forcing missile designers to compromise on system performance. Optical nanocomposites may present the opportunity to engineer new materials that overcome this traditional compromise. The first full scale missile domes of transparent yttria manufactured from nanoscale ceramic powders were developed in the 1980s under Navy funding. Raytheon perfected and characterized its undoped polycrystalline yttria, while lanthana-doped yttria was similarly developed by GTE Labs. The two versions had comparable IR transmittance, fracture toughness, and thermal expansion, while the undoped version exhibited twice the value of thermal conductivity. Renewed interest in yttria windows and domes has prompted efforts to enhance mechanical properties by using nanoscale materials with submicrometer or nanosized grains. In one study, three vendors were selected to provide nanoscale powders for testing and evaluation, and they were compared to a conventional (5 μm) yttria powder previously used to prepare transparent yttria. While all of the nanopowders evaluated had impurity levels that were too high to allow processing to full transparency, 2 of them were processed to theoretical density and moderate transparency. Samples were sintered to a closed pore state at temperatures as low as 1400 C.Hogan, P., et al., "Transparent Yttria for IR Windows and Domes – Past and Present", Raytheon Integrated Defense Systems (10th DoD Electromagnetic Windows Symposium, 2004) After the relatively short sintering period, the component is placed in a hot isostatic press (HIP) and processed for 3 – 10 hours at ~ 30 kpsi(~200 MPa) at a temperature similar to that of the initial sintering. The applied isostatic pressure provides additional driving force for densification by substantially increasing the atomic diffusion coefficients, which promotes additional viscous flow at or near grain boundaries and intergranular pores. Using this method, transparent yttria nanomaterials were produced at lower temperatures, shorter total firing times, and without extra additives which tend to reduce the thermal conductivity. Recently, a newer method has been developed by Mouzon, which relies on the methods of glass-encapsulation, combined with vacuum sintering at 1600 Â°C followed by hot isostatic pressing (HIP) at 1500 Â°C of a highly agglomerated commercial powder. The use of evacuated glass capsules to perform HIP treatment allowed samples that showed open porosity after vacuum sintering to be sintered to transparency. The sintering response of the investigated powder was studied by careful microstructural observations using scanning electron microscopy and optical microscopy both in reflection and transmission. The key to this method is to keep porosity intergranular during pre-sintering, so that it can be removed subsequently by HIP treatment. It was found that agglomerates of closely packed particles are helpful to reach that purpose, since they densify fully and leave only intergranular porosity.


Composites

Prior to the work done at Raytheon, optical properties in nanocomposite ceramic materials had received little attention. Their studies clearly demonstrated near theoretical transmission in nanocomposite optical ceramics for the first time. The yttria/magnesia binary system is an ideal model system for nanocomposite formation. There is limited solid solubility in either one of the constituent phases, permitting a wide range of compositions to be investigated and compared to each other. According to the phase diagram, bi-phase mixtures are stable for all temperatures below ~ 2100 Â°C. In addition, neither yttria nor magnesia shows any absorption in the 3 – 5 μm mid-range IR portion of the EM spectrum. In optical nanocomposites, two or more interpenetrating phases are mixed in a sub-micrometer grain sized, fully dense body. Infrared light scattering can be minimized (or even eliminated) in the material as long as the grain size of the individual phases is significantly smaller than infrared wavelengths. Experimental data suggests that limiting the grain size of the nanocomposite to approximately 1/15th of the wavelength of light is sufficient to limit scattering. Nanocomposites of yttria and magnesia have been produced with a grain size of approximately 200 nm. These materials have yielded good transmission in the 3–5 Î¼m range and strengths higher than that for single-phase individual constituents.Stefanik, T., et al., "Nanocomposite Optical Ceramics for Infrared Widows and Domes", Proc. SPIE, Vol. 6545 (2007) Enhancement of mechanical properties in nanocomposite ceramic materials has been extensively studied. Significant increases in strength (2–5 times), toughness (1–4 times), and creep resistance have been observed in systems including SiC/Al2O3, SiC/Si3N4, SiC/MgO, and Al2O3/ZrO2. The strengthening mechanisms observed vary depending on the material system, and there does not appear to be any general consensus regarding strengthening mechanisms, even within a given system. In the SiC/Al2O3 system, for example, it is widely known and accepted that the addition of SiC particles to the Al2O3 matrix results in a change of failure mechanism from intergranular (between grains) to intragranular (within grains) fracture. The explanations for improved strength include: *A simple reduction of processing flaw concentration during nanocomposite fabrication. *Reduction of the critical flaw size in the material—resulting in increased strength as predicted by the Hall-Petch relation) *Crack deflection at nanophase particles due to residual thermal stresses introduced upon cooling form processing temperatures. *Microcracking along stress-induced dislocations in the matrix material.


Armor

There is an increasing need in the military sector for high-strength, robust materials which have the capability to transmit light around the visible (0.4–0.7 micrometers) and mid-infrared (1–5 micrometers) regions of the spectrum. These materials are needed for applications requiring transparent armor. Transparent armor is a material or system of materials designed to be optically transparent, yet protect from fragmentation or ballistic impacts. The primary requirement for a transparent armor system is to not only defeat the designated threat but also provide a multi-hit capability with minimized distortion of surrounding areas. Transparent armor windows must also be compatible with night vision equipment. New materials that are thinner, lightweight, and offer better ballistic performance are being sought.''Advances in Ceramic Armor IV. Part I: Transparent Glasses and Ceramics''
Ceramic Engineering and Science Proceedings, Vol. 29 (Wiley, American Ceramic Society, 2008)
Existing transparent armor systems typically have many layers, separated by polymer (e.g.
polycarbonate Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate ester, carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, toughness, tough materials, and some grades are optically transp ...
) interlayers. The polymer interlayer is used to mitigate the stresses from thermal expansion mismatches, as well as to stop crack propagation from ceramic to polymer. The polycarbonate is also currently used in applications such as visors, face shields and laser protection goggles. The search for lighter materials has also led to investigations into other polymeric materials such as transparent nylons, polyurethane, and acrylics. The optical properties and durability of transparent plastics limit their use in armor applications. Investigations carried out in the 1970s had shown promise for the use of polyurethane as armor material, but the optical properties were not adequate for transparent armor applications. Several glasses are utilized in transparent armor, such as normal plate glass (soda-lime-silica),
borosilicate glass Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion (≈3 Ã— 10−6 K−1 at 20 Â°C), ma ...
es, and
fused silica Fused quartz, fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses, such as soda-lime glass, lead glass, or borosil ...
. Plate glass has been the most common glass used due to its low cost, but greater requirements for the optical properties and ballistic performance have generated the need for new materials. Chemical or thermal treatments can increase the strength of glasses, and the controlled crystallization of certain glass systems can produce transparent glass-ceramics. Alstom Grid Research & Technology (Stafford, UK), produced a
lithium disilicate Lithium disilicate (Li2Si2O5) is a chemical compound that is a glass ceramic. It is widely used as a dental ceramic due to its strength, machinability and translucency. Use Lithium disilicate has found applications in dentistry as a dental c ...
based glass-ceramic known as TransArm, for use in transparent armor systems with continuous production yielding vehicle windscreen sized pieces (and larger). The inherent advantages of glasses and glass-ceramics include having lower cost than most other ceramic materials, the ability to be produced in curved shapes, and the ability to be formed into large sheets. Transparent crystalline ceramics are used to defeat advanced threats. Three major transparent candidates currently exist:
aluminum oxynitride Aluminium oxynitride (marketed under the name ALON by Surmet Corporation) is a Transparent ceramics, transparent ceramic composed of aluminium, oxygen and nitrogen. Aluminium oxynitride is optically transparent (≥80% for 2 mm thickness) i ...
(AlON),
magnesium aluminate Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , a diminutive form of ''spine,'' in reference to its pointed crystals. Prop ...
spinel (
spinel Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , a diminutive form of ''spine,'' in reference to its pointed crystals. Prop ...
), and single crystal
aluminum oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
(
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
).


Aluminium oxynitride spinel

Aluminium oxynitride Aluminium oxynitride (marketed under the name ALON by Surmet Corporation) is a transparent ceramic composed of aluminium, oxygen and nitrogen. Aluminium oxynitride is optically transparent (≥80% for 2 mm thickness) in the near-ultravio ...
spinel (Al23O27N5), abbreviated as AlON, is one of the leading candidates for transparent armor. It is produced by the Surmet Corporation under the trademark ALON. The incorporation of nitrogen into
aluminium oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several Aluminium oxide (compounds), aluminium oxides, and specifically identified as alum ...
stabilizes a crystalline spinel phase, which due to its cubic crystal structure and unit cell, is an isotropic material which can be produced as transparent ceramic nanomaterial. Thus, fine-grained polycrystalline nanomaterials can be produced and formed into complex geometries using conventional ceramic forming techniques such as
hot isostatic pressing Hot isostatic pressing (HIP) is a manufacturing process, used to reduce the porosity of metals and increase the density of many ceramic materials. This improves the material's mechanical properties and workability. The HIP process subjects a c ...
, and
slip casting Slip casting, or slipcasting, is a ceramic forming techniques, ceramic forming technique, and is widely used in industry and by craft potters to make ceramic forms. This technique is typically used to form complicated shapes like figurative ce ...
. The Surmet Corporation has acquired Raytheon's ALON business and is currently building a market for this technology in the area of Transparent Armor, Sensor windows, Reconnaissance windows and IR Optics such as Lenses and Domes and as an alternative to quartz and sapphire in the semiconductor market. The AlON based transparent armor has been tested to stop multi-hit threats including of 30calAPM2 rounds and 50calAPM2 rounds successfully. The high hardness of AlON provides a scratch resistance which exceeds even the most durable coatings for glass scanner windows, such as those used in supermarkets. Surmet has successfully produced a 15"x18" curved AlON window and is currently attempting to scale up the technology and reduce the cost. In addition, the U.S. Army and U.S. Air Force are both seeking development into next generation applications.


Spinel

Magnesium aluminate spinel (MgAl2O4) is a transparent ceramic with a cubic crystal structure with an excellent optical transmission from 0.2 to 5.5 micrometers in its polycrystalline form. Optical quality transparent
spinel Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , a diminutive form of ''spine,'' in reference to its pointed crystals. Prop ...
has been produced by sinter/HIP, hot pressing, and hot press/HIP operations, and it has been shown that the use of a hot isostatic press can improve its optical and physical properties. Spinel offers some processing advantages over AlON, such as the fact that spinel powder is available from commercial manufacturers while AlON powders are proprietary to Raytheon. It is also capable of being processed at much lower temperatures than AlON and has been shown to possess superior optical properties within the infrared (IR) region. The improved optical characteristics make spinel attractive in sensor applications where effective communication is impacted by the protective missile dome's absorption characteristics. Spinel shows promise for many applications, but is currently not available in bulk form from any manufacturer, although efforts to commercialize spinel are underway. The spinel products business is being pursued by two key U.S. manufacturers: "Technology Assessment and Transfer" and the "Surmet Corporation". An extensive NRL review of the literature has indicated clearly that attempts to make high-quality spinel have failed to date because the densification dynamics of spinel are poorly understood. They have conducted extensive research into the dynamics involved during the densification of spinel. Their research has shown that LiF, although necessary, also has extremely adverse effects during the final stages of densification. Additionally, its distribution in the precursor spinel powders is of critical importance. Traditional bulk mixing processes used to mix LiF sintering aid into a powder leave fairly inhomogeneous distribution of Lif that must be homogenized by extended heat treatment times at elevated temperatures. The homogenizing temperature for Lif/Spinel occurs at the temperature of fast reaction between the LiF and the Al2O3. In order to avoid this detrimental reaction, they have developed a new process that uniformly coats the spinel particles with the sintering aid. This allows them to reduce the amount of Lif necessary for densification and to rapidly heat through the temperature of maximum reactivity. These developments have allowed NRL to fabricate MgAl2O4 spinel to high transparency with extremely high reproducibility that should enable military as well as commercial use of spinel.


Sapphire

Single-crystal aluminum oxide (
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
– Al2O3) is a transparent ceramic. Sapphire's crystal structure is rhombohedral and thus its properties are anisotropic, varying with crystallographic orientation. Transparent alumina is currently one of the most mature transparent ceramics from a production and application perspective, and is available from several manufacturers. But the cost is high due to the processing temperature involved, as well as machining costs to cut parts out of single crystal boules. It also has a very high mechanical strength – but that is dependent on the surface finish. The high level of maturity of sapphire from a production and application standpoint can be attributed to two areas of business:
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
windows for missiles and domes, and electronic/semiconductor industries and applications. There are current programs to scale-up sapphire grown by the heat exchanger method or edge defined film-fed growth (EFG) processes. Its maturity stems from its use as windows and in semiconductor industry. Crystal Systems Inc. which uses single
crystal growth Crystal growth is a major stage of a crystallization, crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. The growth typically follows an ini ...
techniques, is currently scaling their sapphire boules to diameter and larger. Another producer, the
Saint-Gobain Group Compagnie de Saint-Gobain S.A. () is a French multinational corporation, founded in 1665 in Paris as the Manufacture royale de glaces de miroirs, and today headquartered on the outskirts of Paris, at La Défense and in Courbevoie. Originally a ...
produces transparent sapphire using an edge-defined growth technique. Sapphire grown by this technique produces an optically inferior material to that which is grown via single crystal techniques, but is much less expensive, and retains much of the hardness, transmission, and scratch-resistant characteristics. Saint-Gobain is currently capable of producing 0.43" thick (as grown) sapphire, in 12" × 18.5" sheets, as well as thick, single-curved sheets. The U.S. Army Research Laboratory is currently investigating use of this material in a laminate design for transparent armor systems. The Saint Gobain Group have commercialized the capability to meet flight requirements on the F-35 Joint Strike Fighter and F-22 Raptor next generation fighter aircraft.


Composites

Future high-speed infrared-guided missiles will require new dome materials that are substantially more durable than those in use today, while retaining maximum transparency across the entire operational spectrum or bandwidth. A long-standing compromise exists between optical bandpass and mechanical durability within the current group of single-phase (crystalline or glassy) IR transmitting ceramic materials, forcing missile designers to accept substandard overall system performance. Optical nanocomposites may provide the opportunity to engineer new materials that may overcome these traditional limitations. For example, transparent ceramic armor consisting of a lightweight composite has been formed by utilizing a face plate of transparent alumina Al2O3 (or magnesia MgO) with a back-up plate of transparent plastic. The two plates (bonded together with a transparent adhesive) afford complete ballistic protection against 0.30 AP M2 projectiles at 0° obliquity with a muzzle velocity of per second. Another transparent composite armor provided complete protection for small arms projectiles up to and including caliber .50 AP M2 projectiles consisting of two or more layers of transparent ceramic material.Navias, L., ''Magnesia alumina spinel articles and process of preparing same'', U.S. Patent 3083123 (1965) Nanocomposites of yttria and magnesia have been produced with an average grain size of ~200 nm. These materials have exhibited near theoretical transmission in the 3 – 5 μm IR band. Additionally, such composites have yielded higher strengths than those observed for single phase solid-state components. Despite a lack of agreement regarding mechanism of failure, it is widely accepted that nanocomposite ceramic materials can and do offer improved mechanical properties over those of single phase materials or nanomaterials of uniform chemical composition. Nanocomposite ceramic materials also offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. It is anticipated that further development will result in high strength, high transparency nanomaterials which are suitable for application as next generation armor.


See also

*
Ceramic engineering Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions ...
*
Lumicera Lumicera is a transparent ceramic developed by Murata Manufacturing Co., Ltd. Murata Manufacturing first developed transparent polycrystalline ceramics in February 2001. This polycrystalline ceramic is a type of dielectric resonator material comm ...
*
Nanomaterials Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science ...
*
Optical fiber An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
*
Transparent materials In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable light scattering by particles, scattering of light. On a macroscopic scale ...


References


Further reading

*''Ceramic Processing Before Firing'', Onoda, G.Y., Jr. and Hench, L.L. Eds., (Wiley & Sons, New York, 1979)


External links


Laser AdvancesLight-Scattering ModelRosenflanz technique
{{DEFAULTSORT:Transparent Ceramics Oxides Transparent materials