HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, to
translate Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
and mathematics, continuous translational symmetry is the
invariance Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iterat ...
of a system of equations under any translation. Discrete translational symmetry is invariant under discrete translation. Analogously an
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
on functions is said to be translationally invariant with respect to a translation operator T_\delta if the result after applying doesn't change if the argument function is translated. More precisely it must hold that \forall \delta \ A f = A (T_\delta f). Laws of physics are translationally invariant under a spatial translation if they do not distinguish different points in space. According to Noether's theorem, space translational symmetry of a physical system is equivalent to the momentum conservation law. Translational symmetry of an object means that a particular translation does not change the object. For a given object, the translations for which this applies form a group, the symmetry group of the object, or, if the object has more kinds of symmetry, a subgroup of the symmetry group.


Geometry

Translational invariance implies that, at least in one direction, the object is infinite: for any given point p, the set of points with the same properties due to the translational symmetry form the infinite discrete set . Fundamental domains are e.g. for any
hyperplane In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
H for which a has an independent direction. This is in 1D a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
, in 2D an infinite strip, and in 3D a slab, such that the vector starting at one side ends at the other side. Note that the strip and slab need not be perpendicular to the vector, hence can be narrower or thinner than the length of the vector. In spaces with dimension higher than 1, there may be multiple translational symmetry. For each set of ''k'' independent translation vectors, the symmetry group is isomorphic with Z''k''. In particular, the multiplicity may be equal to the dimension. This implies that the object is infinite in all directions. In this case, the set of all translations forms a lattice. Different bases of translation vectors generate the same lattice
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bi ...
one is transformed into the other by a matrix of integer coefficients of which the absolute value of the
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
is 1. The absolute value of the
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
of the matrix formed by a set of translation vectors is the hypervolume of the ''n''-dimensional parallelepiped the set subtends (also called the ''covolume'' of the lattice). This parallelepiped is a fundamental region of the symmetry: any pattern on or in it is possible, and this defines the whole object. See also
lattice (group) In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate wise addition or subtraction of two points in the lattice produces another lattice poi ...
. E.g. in 2D, instead of a and b we can also take a and , etc. In general in 2D, we can take and for integers ''p'', ''q'', ''r'', and ''s'' such that is 1 or −1. This ensures that a and b themselves are integer linear combinations of the other two vectors. If not, not all translations are possible with the other pair. Each pair a, b defines a parallelogram, all with the same area, the magnitude of the
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
. One parallelogram fully defines the whole object. Without further symmetry, this parallelogram is a fundamental domain. The vectors a and b can be represented by complex numbers. For two given lattice points, equivalence of choices of a third point to generate a lattice shape is represented by the modular group, see
lattice (group) In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate wise addition or subtraction of two points in the lattice produces another lattice poi ...
. Alternatively, e.g. a rectangle may define the whole object, even if the translation vectors are not perpendicular, if it has two sides parallel to one translation vector, while the other translation vector starting at one side of the rectangle ends at the opposite side. For example, consider a tiling with equal rectangular tiles with an asymmetric pattern on them, all oriented the same, in rows, with for each row a shift of a fraction, not one half, of a tile, always the same, then we have only translational symmetry, wallpaper group ''p''1 (the same applies without shift). With rotational symmetry of order two of the pattern on the tile we have ''p''2 (more symmetry of the pattern on the tile does not change that, because of the arrangement of the tiles). The rectangle is a more convenient unit to consider as fundamental domain (or set of two of them) than a parallelogram consisting of part of a tile and part of another one. In 2D there may be translational symmetry in one direction for vectors of any length. One line, not in the same direction, fully defines the whole object. Similarly, in 3D there may be translational symmetry in one or two directions for vectors of any length. One plane (
cross-section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Ab ...
) or line, respectively, fully defines the whole object.


Examples

* Frieze patterns all have translational symmetries, and sometimes other kinds. * The Fourier transform with subsequent computation of absolute values is a translation-invariant operator. * The mapping from a polynomial function to the polynomial degree is a translation-invariant functional. * The Lebesgue measure is a complete translation-invariant measure.


See also

* Glide reflection * Displacement *
Periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to d ...
*
Lattice (group) In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate wise addition or subtraction of two points in the lattice produces another lattice poi ...
* Translation operator (quantum mechanics) * Rotational symmetry * Lorentz symmetry * Tessellation *{{slink, List of cycles#Mathematics of waves and cycles


References

*Stenger, Victor J. (2000) and MahouShiroUSA (2007). ''Timeless Reality''. Prometheus Books. Especially chpt. 12. Nontechnical. Classical mechanics Symmetry Conservation laws