HOME

TheInfoList



OR:

Transfinite induction is an extension of
mathematical induction Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a ...
to well-ordered sets, for example to sets of
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s or
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
s. Its correctness is a theorem of ZFC.


Induction by cases

Let P(\alpha) be a
property Property is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, re ...
defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then P(\alpha) is also true. Then transfinite induction tells us that P is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that P(0) is true. * Successor case: Prove that for any successor ordinal \alpha+1, P(\alpha+1) follows from P(\alpha) (and, if necessary, P(\beta) for all \beta < \alpha). * Limit case: Prove that for any limit ordinal \lambda, if P(\beta) holds for all \beta < \lambda, then P(\lambda). All three cases are identical except for the type of ordinal considered. They do not formally need to be considered separately, but in practice the proofs are typically so different as to require separate presentations. Zero is sometimes considered a limit ordinal and then may sometimes be treated in proofs in the same case as limit ordinals.


Transfinite recursion

Transfinite recursion is similar to transfinite induction; however, instead of proving that something holds for all ordinal numbers, we construct a sequence of objects, one for each ordinal. As an example, a basis for a (possibly infinite-dimensional)
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
can be created by starting with the empty set and for each ordinal ''α > 0'' choosing a vector that is not in the span of the vectors \. This process stops when no vector can be chosen. More formally, we can state the Transfinite Recursion Theorem as follows: Transfinite Recursion Theorem (version 1). Given a class function ''G'': ''V'' → ''V'' (where ''V'' is the
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
of all sets), there exists a unique
transfinite sequence In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least ...
''F'': Ord → ''V'' (where Ord is the class of all ordinals) such that :F(\alpha) = G(F \upharpoonright \alpha) for all ordinals ''α'', where \upharpoonright denotes the restriction of ''Fs domain to ordinals <''α''. As in the case of induction, we may treat different types of ordinals separately: another formulation of transfinite recursion is the following: Transfinite Recursion Theorem (version 2). Given a set ''g''1, and class functions ''G''2, ''G''3, there exists a unique function ''F'': Ord → ''V'' such that * ''F''(0) = ''g''1, * ''F''(''α'' + 1) = ''G''2(''F''(''α'')), for all ''α'' ∈ Ord, * F(\lambda) = G_3(F \upharpoonright \lambda), for all limit ''λ'' ≠ 0. Note that we require the domains of ''G''2, ''G''3 to be broad enough to make the above properties meaningful. The uniqueness of the sequence satisfying these properties can be proved using transfinite induction. More generally, one can define objects by transfinite recursion on any well-founded relation ''R''. (''R'' need not even be a set; it can be a
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
, provided it is a set-like relation; i.e. for any ''x'', the collection of all ''y'' such that ''yRx'' is a set.)


Relationship to the axiom of choice

Proofs or constructions using induction and recursion often use the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
to produce a well-ordered relation that can be treated by transfinite induction. However, if the relation in question is already well-ordered, one can often use transfinite induction without invoking the axiom of choice.In fact, the domain of the relation does not even need to be a set. It can be a proper class, provided that the relation ''R'' is set-like: for any ''x'', the collection of all ''y'' such that ''y'' ''R'' ''x'' must be a set. For example, many results about Borel sets are proved by transfinite induction on the ordinal rank of the set; these ranks are already well-ordered, so the axiom of choice is not needed to well-order them. The following construction of the Vitali set shows one way that the axiom of choice can be used in a proof by transfinite induction: : First,
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s (this is where the axiom of choice enters via the well-ordering theorem), giving a sequence \langle r_\alpha \mid \alpha < \beta \rangle , where β is an ordinal with the
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \ ...
. Let ''v''0 equal ''r''0. Then let ''v''1 equal ''r''''α''1, where ''α''1 is least such that ''r''''α''1 − ''v''0 is not a
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
. Continue; at each step use the least real from the ''r'' sequence that does not have a rational difference with any element thus far constructed in the ''v'' sequence. Continue until all the reals in the ''r'' sequence are exhausted. The final ''v'' sequence will enumerate the Vitali set. The above argument uses the axiom of choice in an essential way at the very beginning, in order to well-order the reals. After that step, the axiom of choice is not used again. Other uses of the axiom of choice are more subtle. For example, a construction by transfinite recursion frequently will not specify a ''unique'' value for ''A''''α''+1, given the sequence up to ''α'', but will specify only a ''condition'' that ''A''''α''+1 must satisfy, and argue that there is at least one set satisfying this condition. If it is not possible to define a unique example of such a set at each stage, then it may be necessary to invoke (some form of) the axiom of choice to select one such at each step. For inductions and recursions of
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
length, the weaker
axiom of dependent choice In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. T ...
is sufficient. Because there are models of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
of interest to set theorists that satisfy the axiom of dependent choice but not the full axiom of choice, the knowledge that a particular proof only requires dependent choice can be useful.


See also

*
Mathematical induction Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a ...
* ∈-induction *
Transfinite number In mathematics, transfinite numbers or infinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of i ...
* Well-founded induction *
Zorn's lemma Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least on ...


Notes


References

*


External links

* {{Set theory Mathematical induction Ordinal numbers Recursion