HOME

TheInfoList



OR:

In
analytical geometry Analytic or analytical may refer to: Chemistry * Analytical chemistry, the analysis of material samples to learn their chemical composition and structure * Analytical technique, a method that is used to determine the concentration of a chemica ...
, a transcendental curve is a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
that is not an
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
.Newman, JA, ''The Universal Encyclopedia of Mathematics'', Pan Reference Books, 1976, , "Transcendental curves". Here for a curve, ''C'', what matters is the point set (typically in the plane) underlying ''C'', not a given parametrisation. For example, the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
is an algebraic curve (pedantically, the real points of such a curve); the usual parametrisation by
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s may involve those
transcendental function In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using only the basic operations of addition, subtraction ...
s, but certainly the unit circle is defined by a polynomial equation. (The same remark applies to
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
s and
elliptic function In the mathematical field of complex analysis, elliptic functions are special kinds of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Those integrals are ...
s; and in fact to curves of
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
> 1 and automorphic functions.) The properties of algebraic curves, such as
Bézout's theorem In algebraic geometry, Bézout's theorem is a statement concerning the number of common zeros of polynomials in indeterminates. In its original form the theorem states that ''in general'' the number of common zeros equals the product of the de ...
, give rise to criteria for showing curves actually are transcendental. For example, an algebraic curve ''C'' either meets a given line ''L'' in a finite number of points, or possibly contains all of ''L''. Thus a curve intersecting any line in an infinite number of points, while not containing it, must be transcendental. This applies not just to
sinusoidal A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is '' simple harmonic motion''; as rotation, it correspond ...
curves, therefore; but to large classes of curves showing oscillations. The term is originally attributed to
Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many ...
.


Further examples

*
Cycloid In geometry, a cycloid is the curve traced by a point on a circle as it Rolling, rolls along a Line (geometry), straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette (curve), roulette, a curve g ...
*
Trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s *
Logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
ic and
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: * Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value * Ex ...
functions * Archimedes' spiral *
Logarithmic spiral A logarithmic spiral, equiangular spiral, or growth spiral is a self-similarity, self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewi ...
*
Catenary In physics and geometry, a catenary ( , ) is the curve that an idealized hanging chain or wire rope, cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, ...
*
Quadratrix of Hippias The quadratrix or trisectrix of Hippias (also called the quadratrix of Dinostratus) is a curve which is created by a uniform motion. It is traced out by the crossing point of two Line (geometry), lines, one moving by translation (geometry), tran ...


References

{{Authority control Curves ru:Кривая#Трансцендентные кривые