Trace Identity
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a trace identity is any
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
involving the
trace Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album), by Nell Other uses in arts and entertainment * ...
of a
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
.


Properties

Trace identities are invariant under simultaneous
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change o ...
.


Uses

They are frequently used in the
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descr ...
of n \times n matrices to find the generators and
relations Relation or relations may refer to: General uses * International relations, the study of interconnection of politics, economics, and law on a global level * Interpersonal relationship, association or acquaintance between two or more people * ...
of the
ring of invariants In algebra, the fixed-point subring R^f of an automorphism ''f'' of a ring ''R'' is the subring of the fixed points of ''f'', that is, :R^f = \. More generally, if ''G'' is a group acting on ''R'', then the subring of ''R'' :R^G = \ is called the f ...
, and therefore are useful in answering questions similar to that posed by
Hilbert's fourteenth problem In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated. The setting is as follows: Assume that ''k'' is a field and let ''K'' be a subfield of ...
.


Examples

* The
Cayley–Hamilton theorem In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies ...
says that every square matrix satisfies its own
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
. This also implies that all square matrices satisfy \operatorname\left(A^n\right) - c_ \operatorname\left(A^\right) + \cdots + (-1)^n n \det(A) = 0\, where the coefficients c_i are given by the
elementary symmetric polynomial In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary sy ...
s of the
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s of . * All square matrices satisfy \operatorname(A) = \operatorname\left(A^\mathsf\right).\,


See also

*


References

{{citation, title=Graduate Algebra: Noncommutative View, volume=2, series=
Graduate Studies in Mathematics Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General T ...
, first=Louis Halle, last=Rowen, publisher=American Mathematical Society, year=2008, isbn=9780821841532, page=412, url=https://books.google.com/books?id=8svFC09gGeMC&pg=PA412. Invariant theory Linear algebra