Titanium Gypsum
   HOME

TheInfoList



OR:

Titanium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Ti and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
22. Found in nature only as an oxide, it can be reduced to produce a lustrous
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that c ...
with a silver
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are assoc ...
, low
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, and high strength, resistant to
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
in
sea water Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appro ...
, aqua regia, and
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
. Titanium was discovered in
Cornwall Cornwall (; kw, Kernow ) is a historic county and ceremonial county in South West England. It is recognised as one of the Celtic nations, and is the homeland of the Cornish people. Cornwall is bordered to the north and west by the Atlan ...
,
Great Britain Great Britain is an island in the North Atlantic Ocean off the northwest coast of continental Europe. With an area of , it is the largest of the British Isles, the largest European island and the ninth-largest island in the world. It is ...
, by
William Gregor William Gregor (25 December 1761 – 11 June 1817) was an English clergyman and mineralogist who discovered the elemental metal titanium. Early years He was born at the Trewarthenick Estate in Cornwall, the son of Francis Gregor and Mary Cop ...
in 1791 and was named by
Martin Heinrich Klaproth Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and ...
after the
Titans In Greek mythology, the Titans ( grc, οἱ Τῑτᾶνες, ''hoi Tītânes'', , ''ho Tītân'') were the pre-Olympian gods. According to the ''Theogony'' of Hesiod, they were the twelve children of the primordial parents Uranus (Sky) and Gai ...
of
Greek mythology A major branch of classical mythology, Greek mythology is the body of myths originally told by the ancient Greeks, and a genre of Ancient Greek folklore. These stories concern the origin and nature of the world, the lives and activities of ...
. The element occurs within a number of
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ...
s, principally
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visible wa ...
and
ilmenite Ilmenite is a titanium-iron oxide mineral with the idealized formula . It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing ...
, which are widely distributed in the
Earth's crust Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The ...
and
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years ...
; it is found in almost all living things, as well as bodies of water, rocks, and soils. The metal is extracted from its principal mineral ores by the
Kroll Kroll is a German, Anglo-Saxon, and Scottish surname. Notable people with the surname include: * Colin Kroll (1983/4–2018), American businessman; co-founder of Vine and HQ Trivia * Eric Kroll (born 1946), American photographer * Fredric Krol ...
and
Hunter Hunting is the human practice of seeking, pursuing, capturing, or killing wildlife or feral animals. The most common reasons for humans to hunt are to harvest food (i.e. meat) and useful animal products (fur/ hide, bone/tusks, horn/antler, et ...
processes. The most common compound,
titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble ...
, is a popular
photocatalyst In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a catalyst. In catalyzed photolysis, light is absorbed by an adsorbed substrate. In photogenerated catalysis, the photocatalytic activity depends on the abil ...
and is used in the manufacture of white pigments. Other compounds include
titanium tetrachloride Titanium tetrachloride is the inorganic compound with the formula . It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. is a volatile liquid. Upon contact with humid air, it forms thick clouds ...
(TiCl4), a component of
smoke screen A smoke screen is smoke released to mask the movement or location of military units such as infantry, tanks, aircraft, or ships. Smoke screens are commonly deployed either by a canister (such as a grenade) or generated by a vehicle (such as a ...
s and
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s; and
titanium trichloride Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important cataly ...
(TiCl3), which is used as a catalyst in the production of
polypropylene Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene. Polypropylene belongs to the group of polyolefins an ...
. Titanium can be
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
ed with
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
,
aluminium Aluminium (aluminum in AmE, American and CanE, Canadian English) is a chemical element with the Symbol (chemistry), symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately o ...
,
vanadium Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pass ...
, and
molybdenum Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with le ...
, among other elements, to produce strong, lightweight alloys for aerospace (
jet engine A jet engine is a type of reaction engine discharging a fast-moving jet (fluid), jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition can include Rocket engine, rocket, Pump-jet, water jet, and ...
s,
missile In military terminology, a missile is a missile guidance, guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets (when a previously ...
s, and
spacecraft A spacecraft is a vehicle or machine designed to spaceflight, fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth ...
), military, industrial processes (chemicals and petrochemicals,
desalination plant Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltw ...
s,
pulp Pulp may refer to: * Pulp (fruit), the inner flesh of fruit Engineering * Dissolving pulp, highly purified cellulose used in fibre and film manufacture * Pulp (paper), the fibrous material used to make paper * Molded pulp, a packaging material ...
, and
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, Textile, rags, poaceae, grasses or other vegetable sources in water, draining the water through fine mesh leaving the fibre e ...
), automotive,
agriculture Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled peop ...
(farming), medical
prostheses In medicine, a prosthesis (plural: prostheses; from grc, πρόσθεσις, prósthesis, addition, application, attachment), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trau ...
, orthopedic
implants Implant can refer to: Medicine *Implant (medicine), or specifically: ** Brain implant **Breast implant ** Buttock implant **Cochlear implant **Contraceptive implant **Dental implant ** Fetal tissue implant **Implantable cardioverter-defibrillator ...
, dental and endodontic instruments and files,
dental implant A dental implant (also known as an endosseous implant or fixture) is a prosthesis that interfaces with the bone of the jaw or skull to support a dental prosthesis such as a crown, bridge, denture, or facial prosthesis or to act as an orthodo ...
s, sporting goods, jewelry,
mobile phone A mobile phone, cellular phone, cell phone, cellphone, handphone, hand phone or pocket phone, sometimes shortened to simply mobile, cell, or just phone, is a portable telephone that can make and receive telephone call, calls over a radio freq ...
s, and other applications. The two most useful properties of the metal are corrosion resistance and strength-to-density ratio, the highest of any metallic element. In its unalloyed condition, titanium is as strong as some steels, but less dense. There are two
allotropic Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
forms and five naturally occurring
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass number ...
s of this element, Ti through Ti, with Ti being the most abundant (73.8%).


Characteristics


Physical properties

As a
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
, titanium is recognized for its high
strength-to-weight ratio The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile appli ...
. It is a strong metal with low
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
that is quite
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
(especially in an
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as we ...
-free environment), lustrous, and metallic-white in
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are assoc ...
. The relatively high melting point (1,668 °C or 3,034 °F) makes it useful as a
refractory metal Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group diff ...
. It is
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
and has fairly low
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
compared to other metals. Titanium is
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
when cooled below its critical temperature of 0.49 K.
Commercially pure (99.2% pure)
grades Grade most commonly refers to: * Grade (education), a measurement of a student's performance * Grade, the number of the year a student has reached in a given educational stage * Grade (slope), the steepness of a slope Grade or grading may also r ...
of titanium have
ultimate tensile strength Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials ...
of about 434
MPa MPA or mPa may refer to: Academia Academic degrees * Master of Performing Arts * Master of Professional Accountancy * Master of Public Administration * Master of Public Affairs Schools * Mesa Preparatory Academy * Morgan Park Academy * Mo ...
(63,000
psi Psi, PSI or Ψ may refer to: Alphabetic letters * Psi (Greek) (Ψ, ψ), the 23rd letter of the Greek alphabet * Psi (Cyrillic) (Ѱ, ѱ), letter of the early Cyrillic alphabet, adopted from Greek Arts and entertainment * "Psi" as an abbreviation ...
), equal to that of common, low-grade steel alloys, but are less dense. Titanium is 60% denser than aluminium, but more than twice as strong as the most commonly used 6061-T6 aluminium alloy. Certain titanium alloys (e.g., Beta C) achieve tensile strengths of over 1,400 MPa (200,000 psi). However, titanium loses strength when heated above . Titanium is not as hard as some grades of heat-treated steel; it is non-magnetic and a poor conductor of heat and electricity. Machining requires precautions, because the material can
gall Galls (from the Latin , 'oak-apple') or ''cecidia'' (from the Greek , anything gushing out) are a kind of swelling growth on the external Tissue (biology), tissues of plants, fungi, or animals. Plant galls are abnormal outgrowths of plant tissu ...
unless sharp tools and proper cooling methods are used. Like steel structures, those made from titanium have a
fatigue limit The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. Some metals such as ferrous alloys and titanium alloys have a distinct limit, ...
that guarantees longevity in some applications. The metal is a dimorphic
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
of an hexagonal α form that changes into a body-centered cubic (lattice) β form at . The
specific heat In thermodynamics, the specific heat capacity (symbol ) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of he ...
of the α form increases dramatically as it is heated to this transition temperature but then falls and remains fairly constant for the β form regardless of temperature.


Chemical properties

Like
aluminium Aluminium (aluminum in AmE, American and CanE, Canadian English) is a chemical element with the Symbol (chemistry), symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately o ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
, the surface of titanium metal and its alloys
oxidize Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
immediately upon exposure to air to form a thin non-porous passivation layer that protects the bulk metal from further oxidation or corrosion. When it first forms, this protective layer is only 1–2 nm thick but it continues to grow slowly, reaching a thickness of 25 nm in four years. This layer gives titanium excellent resistance to corrosion, almost equivalent to
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
. Titanium is capable of withstanding attack by dilute sulfuric and
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the dig ...
s, chloride solutions, and most organic acids. However, titanium is corroded by concentrated acids. As indicated by its negative redox potential, titanium is a very reactive metal that burns in normal air at lower temperatures than the melting point. Melting is possible only in an inert atmosphere or vacuum. At , it combines with chlorine. It also reacts with the other halogens and absorbs hydrogen. Titanium readily reacts with oxygen at in air, and at in pure oxygen, forming
titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble ...
. Titanium is one of the few elements that burns in pure nitrogen gas, reacting at to form
titanium nitride Titanium nitride (TiN; sometimes known as Tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface pr ...
, which causes embrittlement. Because of its high reactivity with oxygen, nitrogen, and many other gases, titanium that is evaporated from filaments is the basis for
titanium sublimation pump A titanium sublimation pump (TSP) is a type of vacuum pump used to remove residual gas in ultra-high vacuum systems, maintaining the vacuum. Principle of operation Its construction and principle of operation is simple. It consists of a titanium ...
s, in which titanium serves as a scavenger for these gases by chemically binding to them. Such pumps inexpensively produce extremely low pressures in
ultra-high vacuum Ultra-high vacuum (UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximately ...
systems.


Occurrence

Titanium is the ninth-most abundant element in
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
's crust (0.63% by
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
) and the seventh-most abundant metal. It is present as oxides in most
igneous rock Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or l ...
s, in
sediments Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand a ...
derived from them, in living things, and natural bodies of water. Of the 801 types of igneous rocks analyzed by the
United States Geological Survey The United States Geological Survey (USGS), formerly simply known as the Geological Survey, is a scientific agency of the United States government. The scientists of the USGS study the landscape of the United States, its natural resources, ...
, 784 contained titanium. Its proportion in soils is approximately 0.5 to 1.5%. Common titanium-containing
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ...
s are
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other polymorphs (or mineral forms ...
,
brookite Brookite is the orthorhombic variant of titanium dioxide (TiO2), which occurs in four known natural polymorphic forms (minerals with the same composition but different structure). The other three of these forms are akaogiite (monoclinic), anatas ...
,
ilmenite Ilmenite is a titanium-iron oxide mineral with the idealized formula . It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing ...
,
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure In crystallography, crystal ...
,
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visible wa ...
, and
titanite Titanite, or sphene (from the Greek ''sphenos'' (σφηνώ), meaning wedge), is a calcium titanium nesosilicate mineral, Ca Ti Si O5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals in ...
(sphene).
Akaogiite Akaogiite ( IMA symbol Aka) is an exceedingly rare mineral, one of the natural forms of titanium dioxide (TiO2). It is a high-pressure polymorph Polymorphism, polymorphic, polymorph, polymorphous, or polymorphy may refer to: Computing * Polymo ...
is an extremely rare mineral consisting of titanium dioxide. Of these minerals, only rutile and ilmenite have economic importance, yet even they are difficult to find in high concentrations. About 6.0 and 0.7 million tonnes of those minerals were mined in 2011, respectively. Significant titanium-bearing ilmenite deposits exist in Australia,
Canada Canada is a country in North America. Its ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, covering over , making it the world's second-largest country by tota ...
, China,
India India, officially the Republic of India ( Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the ...
,
Mozambique Mozambique (), officially the Republic of Mozambique ( pt, Moçambique or , ; ny, Mozambiki; sw, Msumbiji; ts, Muzambhiki), is a country located in southeastern Africa bordered by the Indian Ocean to the east, Tanzania to the north, Mala ...
,
New Zealand New Zealand ( mi, Aotearoa ) is an island country in the southwestern Pacific Ocean. It consists of two main landmasses—the North Island () and the South Island ()—and over 700 List of islands of New Zealand, smaller islands. It is the ...
,
Norway Norway, officially the Kingdom of Norway, is a Nordic country in Northern Europe, the mainland territory of which comprises the western and northernmost portion of the Scandinavian Peninsula. The remote Arctic island of Jan Mayen and t ...
,
Sierra Leone Sierra Leone,)]. officially the Republic of Sierra Leone, is a country on the southwest coast of West Africa. It is bordered by Liberia to the southeast and Guinea surrounds the northern half of the nation. Covering a total area of , Sierra ...
,
South Africa South Africa, officially the Republic of South Africa (RSA), is the southernmost country in Africa. It is bounded to the south by of coastline that stretch along the South Atlantic and Indian Oceans; to the north by the neighbouring count ...
, and
Ukraine Ukraine ( uk, Україна, Ukraïna, ) is a country in Eastern Europe. It is the second-largest European country after Russia, which it borders to the east and northeast. Ukraine covers approximately . Prior to the ongoing Russian invas ...
. About 210,000 tonnes of titanium
metal sponge Regular foamed aluminium A metal foam is a cellular structure consisting of a solid metal (frequently aluminium) with gas-filled pores comprising a large portion of the volume. The pores can be sealed (closed-cell foam) or interconnected (open-c ...
were produced in 2020, mostly in China (110,000 t), Japan (50,000 t), Russia (33,000 t) and Kazakhstan (15,000 t). Total reserves of anatase, ilmenite, and rutile are estimated to exceed 2 billion tonnes. The concentration of titanium is about 4
picomolar Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solut ...
in the ocean. At 100 °C, the concentration of titanium in water is estimated to be less than 10−7 M at pH 7. The identity of titanium species in aqueous solution remains unknown because of its low solubility and the lack of sensitive spectroscopic methods, although only the 4+ oxidation state is stable in air. No evidence exists for a biological role, although rare organisms are known to accumulate high concentrations of titanium. Titanium is contained in
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object en ...
s, and it has been detected in the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared rad ...
and in M-type
star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make ...
s (the coolest type) with a surface temperature of .
Rocks In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's ...
brought back from the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width ...
during the Apollo 17 mission are composed of 12.1% TiO2. Native titanium (pure metallic) is very rare.


Isotopes

Naturally occurring titanium is composed of five stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass number ...
s: 46Ti, 47Ti, 48Ti, 49Ti, and 50Ti, with 48Ti being the most abundant (73.8%
natural abundance In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomi ...
). At least 21
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s have been characterized, the most stable of which are 44Ti with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 63 years; 45Ti, 184.8 minutes; 51Ti, 5.76 minutes; and 52Ti, 1.7 minutes. All other
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
isotopes have half-lives less than 33 seconds, with the majority less than half a second. The isotopes of titanium range in
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a give ...
from 39.002 u (39Ti) to 63.999 u (64Ti). The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
for isotopes lighter than 46Ti is
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron e ...
(with the exception of 44Ti which undergoes
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. T ...
), leading to
isotopes of scandium Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-five radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half ...
, and the primary mode for isotopes heavier than 50Ti is
beta emission In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For exam ...
, leading to
isotopes of vanadium Naturally occurring vanadium (23V) is composed of one stable isotope 51V and one radioactive isotope 50V with a half-life of 1.5×1017 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with t ...
. Titanium becomes radioactive upon bombardment with
deuterons Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
, emitting mainly
positrons The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
and hard
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
.


Compounds

The +4
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...
dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an
octahedral coordination geometry In chemistry, octahedral molecular geometry, also called square bipyramidal, describes the shape of compounds with six atoms or groups of atoms or ligands symmetrically arranged around a central atom, defining the vertices of an octahedron. The o ...
in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.


Oxides, sulfides, and alkoxides

The most important oxide is TiO2, which exists in three important polymorphs; anatase, brookite, and rutile. All three are white diamagnetic solids, although mineral samples can appear dark (see
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visible wa ...
). They adopt polymeric structures in which Ti is surrounded by six oxide ligands that link to other Ti centers. The term ''
titanate In chemistry, titanate usually refers to inorganic compounds composed of titanium oxides. Together with niobate, titanate salts form the Perovskite group. In some cases, the term is used more generally for any titanium-containing anion, e.g. i ...
s'' usually refers to titanium(IV) compounds, as represented by
barium titanate Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material th ...
(BaTiO3). With a perovskite structure, this material exhibits
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word ' ...
properties and is used as a transducer in the interconversion of
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
and
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describ ...
. Many minerals are titanates, such as ilmenite (FeTiO3).
Star sapphires Star Sapphire is the name of several fictional characters in DC Comics; many of them are villainous, and all connected in origin. Within DC continuity, an immortal race of warrior women (the Zamarons) were depicted as having the ancient tradition ...
and
rubies A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called s ...
get their asterism (star-forming shine) from the presence of titanium dioxide impurities. A variety of reduced oxides (
suboxide Suboxides are a class of oxides wherein the electropositive element is in excess relative to the “normal” oxides. When the electropositive element is a metal, the compounds are sometimes referred to as “metal-rich”. Thus the normal oxid ...
s) of titanium are known, mainly reduced
stoichiometries Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equa ...
of titanium dioxide obtained by
atmospheric plasma spraying Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame). Thermal sprayi ...
. Ti3O5, described as a Ti(IV)-Ti(III) species, is a purple semiconductor produced by reduction of TiO2 with hydrogen at high temperatures, and is used industrially when surfaces need to be vapor-coated with titanium dioxide: it evaporates as pure TiO, whereas TiO2 evaporates as a mixture of oxides and deposits coatings with variable refractive index. Also known is Ti2O3, with the
corundum Corundum is a crystalline form of aluminium oxide () typically containing traces of iron, titanium, vanadium and chromium. It is a rock-forming mineral. It is a naturally transparent material, but can have different colors depending on the ...
structure, and
TiO Titanium(II) oxide ( Ti O) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C. It is non-stoichiometric in a range TiO0.7 to TiO1.3 and this is caused by vacancie ...
, with the rock salt structure, although often nonstoichiometric. The alkoxides of titanium(IV), prepared by treating TiCl4 with alcohols, are colorless compounds that convert to the dioxide on reaction with water. They are industrially useful for depositing solid TiO2 via the sol-gel process.
Titanium isopropoxide Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula . This alkoxide of titanium(IV) is used in organic synthesis and materials science. It is a diamagnetic tetrahedral ...
is used in the synthesis of chiral organic compounds via the
Sharpless epoxidation The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is ''tert''-butyl hydroperoxide. The method relies on a catalyst formed fr ...
. Titanium forms a variety of sulfides, but only TiS2 has attracted significant interest. It adopts a layered structure and was used as a cathode in the development of
lithium batteries Lithium battery may refer to: * Lithium metal battery, a non-rechargeable battery with lithium as an anode ** Rechargeable lithium metal battery, a rechargeable counterpart to the lithium metal battery * Lithium-ion battery, a rechargeable bat ...
. Because Ti(IV) is a "hard cation", the sulfides of titanium are unstable and tend to hydrolyze to the oxide with release of hydrogen sulfide.


Nitrides and carbides

Titanium nitride Titanium nitride (TiN; sometimes known as Tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface pr ...
(TiN) is a refractory solid exhibiting extreme hardness, thermal/electrical conductivity, and a high melting point. TiN has a hardness equivalent to
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sap ...
and
carborundum Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal si ...
(9.0 on the
Mohs scale The Mohs scale of mineral hardness () is a qualitative ordinal scale, from 1 to 10, characterizing scratch resistance of various minerals through the ability of harder material to scratch softer material. The scale was introduced in 1812 by the ...
), and is often used to coat cutting tools, such as
drill bit Drill bits are cutting tools used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order ...
s. It is also used as a gold-colored decorative finish and as a
barrier layer A diffusion barrier is a thin layer (usually micrometres thick) of metal usually placed between two other metals. It is done to act as a barrier to protect either one of the metals from corrupting the other.. Adhesion of a plated metal layer to it ...
in
semiconductor fabrication Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuit (IC) chips such as modern computer processors, microcontrollers, and memory chips such as NAND flash and DRAM that are ...
.
Titanium carbide Titanium carbide, Ti C, is an extremely hard ( Mohs 9–9.5) refractory ceramic material, similar to tungsten carbide. It has the appearance of black powder with the sodium chloride (face-centered cubic) crystal structure. It occurs in nature ...
(TiC), which is also very hard, is found in cutting tools and coatings.


Halides

Titanium tetrachloride Titanium tetrachloride is the inorganic compound with the formula . It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. is a volatile liquid. Upon contact with humid air, it forms thick clouds ...
(titanium(IV) chloride, TiCl4) is a colorless volatile liquid (commercial samples are yellowish) that, in air, hydrolyzes with spectacular emission of white clouds. Via the
Kroll process The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. The Kroll process replaced the Hunter process for almost all commercial production. Process In the Kroll process, the Ti ...
, TiCl4 is used in the conversion of titanium ores to titanium metal. Titanium tetrachloride is also used to make titanium dioxide, e.g., for use in white paint. It is widely used in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clay ...
as a
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
, for example in the
Mukaiyama aldol condensation The Mukaiyama aldol addition is an organic reaction and a type of aldol reaction between a silyl enol ether and an aldehyde or formate. The reaction was discovered by Teruaki Mukaiyama (1927–2018) in 1973. His choice of reactants allows for ...
. In the
van Arkel–de Boer process The van Arkel–de Boer process, also known as the iodide process or crystal-bar process, was the first industrial process for the commercial production of pure ductile titanium, zirconium and some other metals. It was developed by Anton Eduard v ...
, titanium tetraiodide (TiI4) is generated in the production of high purity titanium metal. Titanium(III) and titanium(II) also form stable chlorides. A notable example is titanium(III) chloride (TiCl3), which is used as a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
for production of polyolefins (see Ziegler–Natta catalyst) and a reducing reagent, agent in organic chemistry.


Organometallic complexes

Owing to the important role of titanium compounds as polymerization catalyst, compounds with Ti-C bonds have been intensively studied. The most common organotitanium complex is titanocene dichloride ((C5H5)2TiCl2). Related compounds include Tebbe's reagent and Petasis reagent. Titanium forms metal carbonyl, carbonyl complexes, e.g. titanocene dicarbonyl, (C5H5)2Ti(CO)2.


Anticancer therapy studies

Following the success of cisplatin, platinum-based chemotherapy, titanium(IV) complexes were among the first non-platinum compounds to be tested for cancer treatment. The advantage of titanium compounds lies in their high efficacy and low toxicity ''in vivo''. In biological environments, hydrolysis leads to the safe and inert titanium dioxide. Despite these advantages the first candidate compounds failed clinical trials due to insufficient efficacy to toxicity ratios and formulation complications. Further development resulted in the creation of potentially effective, selective, and stable titanium-based drugs.


History

Titanium was discovery of the chemical elements, discovered in 1791 by the clergyman and geologist
William Gregor William Gregor (25 December 1761 – 11 June 1817) was an English clergyman and mineralogist who discovered the elemental metal titanium. Early years He was born at the Trewarthenick Estate in Cornwall, the son of Francis Gregor and Mary Cop ...
as an inclusion (mineral), inclusion of a mineral in
Cornwall Cornwall (; kw, Kernow ) is a historic county and ceremonial county in South West England. It is recognised as one of the Celtic nations, and is the homeland of the Cornish people. Cornwall is bordered to the north and west by the Atlan ...
, Great Britain. Gregor recognized the presence of a new element in ilmenite when he found black sand by a stream and noticed the sand was attracted by a magnet. Analyzing the sand, he determined the presence of two metal oxides: iron oxide (explaining the attraction to the magnet) and 45.25% of a white metallic oxide he could not identify. Realizing that the unidentified oxide contained a metal that did not match any known element, in 1791 Gregor reported his findings in both German and French science journals:''Crell's Annalen'' and ''Observations et Mémoires sur la Physique''. Around the same time, Franz-Joseph Müller von Reichenstein produced a similar substance, but could not identify it. The oxide was independently rediscovered in 1795 by Prussian chemist
Martin Heinrich Klaproth Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and ...
in rutile from Boinik (the German name of Bajmócska), a village in Hungary (now Bojničky in Slovakia). Klaproth found that it contained a new element and named it for the titan (mythology), Titans of
Greek mythology A major branch of classical mythology, Greek mythology is the body of myths originally told by the ancient Greeks, and a genre of Ancient Greek folklore. These stories concern the origin and nature of the world, the lives and activities of ...
. After hearing about Gregor's earlier discovery, he obtained a sample of manaccanite and confirmed that it contained titanium. The currently known processes for extracting titanium from its various ores are laborious and costly; it is not possible to reduce the ore by heating with carbon (as in iron smelting) because titanium combines with the carbon to produce titanium carbide. Pure metallic titanium (99.9%) was first prepared in 1910 by Matthew A. Hunter at Rensselaer Polytechnic Institute by heating TiCl4 with sodium at 700–800 °C under great pressure in a batch production, batch process known as the Hunter process. Titanium metal was not used outside the laboratory until 1932 when William Justin Kroll produced it by reducing titanium tetrachloride (TiCl4) with calcium. Eight years later he refined this process with magnesium and with sodium in what became known as the Kroll process. Although research continues to seek cheaper and more efficient routes, such as the FFC Cambridge process, the Kroll process is still predominantly used for commercial production. Titanium of very high purity was made in small quantities when Anton Eduard van Arkel and Jan Hendrik de Boer discovered the iodide process in 1925, by reacting with iodine and decomposing the formed vapors over a hot filament to pure metal. In the 1950s and 1960s, the Soviet Union pioneered the use of titanium in military and submarine applications (Alfa-class submarine, Alfa class and Soviet submarine K-278 Komsomolets, Mike class) as part of programs related to the Cold War. Starting in the early 1950s, titanium came into use extensively in military aviation, particularly in high-performance jets, starting with aircraft such as the F-100 Super Sabre and Lockheed A-12 and SR-71. Throughout the Cold War period, titanium was considered a strategic material by the U.S. government, and a large stockpile of titanium Metal foam, sponge (a porous form of the pure metal) was maintained by the Defense National Stockpile Center, until the stockpile was dispersed in the 2000s. As of 2021, the four leading producers of titanium sponge were China (52%), Japan (24%), Russia (16%) and Kazakhstan (7%).


Production

The processing of titanium metal occurs in four major steps: reduction of titanium ore into "sponge", a porous form; melting of sponge, or sponge plus a master alloy to form an ingot; primary fabrication, where an ingot is converted into general mill products such as bar stock, billet, bar, plate (metal), plate, sheet metal, sheet, strip, and tube (fluid conveyance), tube; and secondary fabrication of finished shapes from mill products. Because it cannot be readily produced by reduction of titanium dioxide, titanium metal is obtained by reduction of TiCl4 with magnesium metal in the Kroll process. The complexity of this batch production in the Kroll process explains the relatively high market value of titanium, despite the Kroll process being less expensive than the Hunter process. To produce the TiCl4 required by the Kroll process, the dioxide is subjected to carbothermic reduction in the presence of
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
. In this process, the chlorine gas is passed over a red-hot mixture of rutile or ilmenite in the presence of carbon. After extensive purification by fractional distillation, the TiCl4 is reduced with molten magnesium in an argon atmosphere. Titanium metal can be further purified by the van Arkel–de Boer process, which involves chemical vapor transport, thermal decomposition of titanium tetraiodide. :2FeTiO3 + 7Cl2 + 6C ->[900^oC] 2FeCl3 + 2TiCl4 + 6CO :TiCl4 + 2Mg ->[1100^oC] Ti + 2MgCl2 Common titanium alloys are made by reduction. For example, cuprotitanium (rutile with copper added is reduced), ferrocarbon titanium (ilmenite reduced with coke (fuel), coke in an electric furnace), and manganotitanium (rutile with manganese or manganese oxides) are reduced. About fifty grades of titanium alloys are designed and currently used, although only a couple of dozen are readily available commercially. The ASTM International recognizes 31 grades of titanium metal and alloys, of which grades one through four are commercially pure (unalloyed). Those four vary in tensile strength as a function of oxygen content, with grade 1 being the most ductile (lowest tensile strength with an oxygen content of 0.18%), and grade 4 the least ductile (highest tensile strength with an oxygen content of 0.40%). The remaining grades are alloys, each designed for specific properties of ductility, strength, hardness, electrical resistivity, creep (deformation), creep resistance, specific corrosion resistance, and combinations thereof. In addition to the ASTM specifications, titanium alloys are also produced to meet aerospace and military specifications (SAE-AMS, MIL-T), ISO standards, and country-specific specifications, as well as proprietary end-user specifications for aerospace, military, medical, and industrial applications. Titanium powder is manufactured using a flow production process known as the Armstrong process that is similar to the batch production Hunter process. A stream of titanium tetrachloride gas is added to a stream of molten sodium; the products (sodium chloride salt and titanium particles) is filtered from the extra sodium. Titanium is then separated from the salt by water washing. Both sodium and chlorine are recycled to produce and process more titanium tetrachloride.


Fabrication

All welding of titanium must be done in an inert atmosphere of argon or helium to shield it from contamination with atmospheric gases (oxygen, nitrogen, and hydrogen). Contamination causes a variety of conditions, such as embrittlement, which reduce the integrity of the assembly welds and lead to joint failure. Titanium is very difficult to solder directly, and hence a solderability, solderable metal or alloy such as steel is coated on titanium prior to soldering. Titanium metal can be machined with the same equipment and the same processes as stainless steel.


Forming and forging

Commercially pure flat product (sheet, plate) can be formed readily, but processing must take into account of the tendency of the metal to springback. This is especially true of certain high-strength alloys. Exposure to the oxygen in air at the elevated temperatures used in forging results in formation of an brittle oxygen-rich metallic surface layer called "alpha case" that worsens the fatigue properties, so it must be removed by milling, etching, or electrochemical treatment.


Applications

Titanium is used in steel as an alloying element (ferro-titanium) to reduce crystallite, grain size and as a deoxidizer, and in stainless steel to reduce carbon content. Titanium is often alloyed with aluminium (to refine grain size),
vanadium Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pass ...
, copper (to harden),
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, manganese,
molybdenum Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with le ...
, and other metals. Titanium mill products (sheet, plate, bar, wire, forgings, castings) find application in industrial, aerospace, recreational, and emerging markets. Powdered titanium is used in pyrotechnics as a source of bright-burning particles.


Pigments, additives, and coatings

About 95% of all titanium ore is destined for refinement into titanium dioxide (), an intensely white permanent pigment used in paints, paper, toothpaste, and plastics. It is also used in cement, in gemstones, as an optical opacifier in paper, and a strengthening agent in graphite composite fishing rods and golf clubs. pigment is chemically inert, resists fading in sunlight, and is very opaque: it imparts a pure and brilliant white color to the brown or grey chemicals that form the majority of household plastics. In nature, this compound is found in the minerals anatase, brookite, and rutile. Paint made with titanium dioxide does well in severe temperatures and marine environments. Pure titanium dioxide has a very high refractive index, index of refraction and an optical dispersion higher than diamond. In addition to being a very important pigment, titanium dioxide is also used in sunscreens.


Aerospace and marine

Because titanium alloys have high tensile strength to density ratio, high corrosion resistance, fatigue resistance, high crack resistance, and ability to withstand moderately high temperatures without creeping, they are used in aircraft, armor plating, naval ships, spacecraft, and missiles. For these applications, titanium is alloyed with aluminium, zirconium, nickel, vanadium, and other elements to manufacture a variety of components including critical structural parts, fire walls, landing gear, exhaust ducts (helicopters), and hydraulic systems. In fact, about two thirds of all titanium metal produced is used in aircraft engines and frames. The titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications. The Lockheed A-12 and its development the SR-71 Blackbird, SR-71 "Blackbird" were two of the first aircraft frames where titanium was used, paving the way for much wider use in modern military and commercial aircraft. A large amount of titanium mill products are used in the production of many aircraft, such as (following values are amount of raw mill products used ... only a fraction of this ends up in the finished aircraft): 116 metric tons are used in the Boeing 787, 77 in the Airbus A380, 59 in the Boeing 777, 45 in the Boeing 747, 18 in the Boeing 737, 32 in the Airbus A340, 18 in the Airbus A330, and 12 in the Airbus A320. In aero engine applications, titanium is used for rotors, compressor blades, hydraulic system components, and nacelles. An early use in jet engines was for the Orenda Iroquois in the 1950s. Because titanium is resistant to corrosion by sea water, it is used to make propeller shafts, rigging, and heat exchangers in
desalination plant Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltw ...
s; heater-chillers for salt water aquariums, fishing line and leader, and divers' knives. Titanium is used in the housings and components of ocean-deployed surveillance and monitoring devices for science and the military. The former Soviet Union developed techniques for making submarines with hulls of titanium alloys forging titanium in huge vacuum tubes. Titanium is used in the walls of the Juno spacecraft's Juno Radiation Vault, vault to shield on-board electronics.


Industrial

Welded titanium pipe and process equipment (heat exchangers, tanks, process vessels, valves) are used in the chemical and petrochemical industries primarily for corrosion resistance. Specific alloys are used in oil and gas downhole applications and nickel hydrometallurgy for their high strength (e. g.: titanium beta C alloy), corrosion resistance, or both. The pulp and paper industry uses titanium in process equipment exposed to corrosive media, such as sodium hypochlorite or wet chlorine gas (in the bleachery). Other applications include ultrasonic welding, wave soldering, and sputtering targets. Titanium tetrachloride (TiCl4), a colorless liquid, is important as an intermediate in the process of making TiO2 and is also used to produce the Ziegler–Natta catalyst. Titanium tetrachloride is also used to iridize glass and, because it fumes strongly in moist air, it is used to make smoke screens.


Consumer and architectural

Titanium metal is used in automotive applications, particularly in automobile and motorcycle racing where low weight and high strength and rigidity are critical. The metal is generally too expensive for the general consumer market, though some late model Chevrolet Corvette, Corvettes have been manufactured with titanium exhausts, and a GM small-block engine, Corvette Z06's LT4 supercharged engine uses lightweight, solid titanium intake valves for greater strength and resistance to heat. Titanium is used in many sporting goods: tennis rackets, golf clubs, lacrosse stick shafts; cricket, hockey, lacrosse, and football helmet grills, and bicycle frames and components. Although not a mainstream material for bicycle production, titanium bikes have been used by racing teams and Adventure Cycling, adventure cyclists. Titanium alloys are used in spectacle frames that are rather expensive but highly durable, long lasting, light weight, and cause no skin allergies. Many backpackers use titanium equipment, including cookware, eating utensils, lanterns, and tent stakes. Though slightly more expensive than traditional steel or aluminium alternatives, titanium products can be significantly lighter without compromising strength. Titanium horseshoes are preferred to steel by farriers because they are lighter and more durable. Titanium has occasionally been used in architecture. The Monument to Yuri Gagarin, the first man to travel in space (), as well as the Monument to the Conquerors of Space on top of the Memorial Museum of Cosmonautics, Cosmonaut Museum in Moscow are made of titanium for the metal's attractive color and association with rocketry. The Guggenheim Museum Bilbao and the Cerritos Millennium Library were the first buildings in Europe and North America, respectively, to be sheathed in titanium panels. Titanium sheathing was used in the Frederic C. Hamilton Building in Denver, Colorado. Because of titanium's superior strength and light weight relative to other metals (steel, stainless steel, and aluminium), and because of recent advances in metalworking techniques, its use has become more widespread in the manufacture of firearms. Primary uses include pistol frames and revolver cylinders. For the same reasons, it is used in the body of laptop computers (for example, in Apple Inc., Apple's PowerBook line). Some upmarket lightweight and corrosion-resistant tools, such as shovels, knife handles and flashlights, are made of titanium or titanium alloys.


Jewelry

Because of its durability, titanium has become more popular for designer jewelry (particularly, titanium rings). Its inertness makes it a good choice for those with allergies or those who will be wearing the jewelry in environments such as swimming pools. Titanium is also Titanium gold, alloyed with gold to produce an alloy that can be marketed as Fineness, 24-karat gold because the 1% of alloyed Ti is insufficient to require a lesser mark. The resulting alloy is roughly the hardness of 14-karat gold and is more durable than pure 24-karat gold. Titanium's durability, light weight, and dent and corrosion resistance make it useful for watch cases. Some artists work with titanium to produce sculptures, decorative objects and furniture. Titanium may be anodising, anodized to vary the thickness of the surface oxide layer, causing optical interference fringes and a variety of bright colors. With this coloration and chemical inertness, titanium is a popular metal for body piercing. Titanium has a minor use in dedicated non-circulating coins and medals. In 1999, Gibraltar released the world's first titanium coin for the millennium celebration. The Gold Coast Titans, an Australian rugby league team, award a medal of pure titanium to their player of the year.


Medical

Because titanium is biocompatibility, biocompatible (non-toxic and not rejected by the body), it has many medical uses, including surgical implements and implants, such as hip balls and sockets (joint replacement) and
dental implant A dental implant (also known as an endosseous implant or fixture) is a prosthesis that interfaces with the bone of the jaw or skull to support a dental prosthesis such as a crown, bridge, denture, or facial prosthesis or to act as an orthodo ...
s that can stay in place for up to 20 years. The titanium is often alloyed with about 4% aluminium or 6% Al and 4% vanadium. Titanium has the inherent ability to osseointegration, osseointegrate, enabling use in dental implants that can last for over 30 years. This property is also useful for internal fixator, orthopedic implant applications. These benefit from titanium's lower modulus of elasticity (Young's modulus) to more closely match that of the bone that such devices are intended to repair. As a result, skeletal loads are more evenly shared between bone and implant, leading to a lower incidence of bone degradation due to stress shielding and periprosthetic bone fractures, which occur at the boundaries of orthopedic implants. However, titanium alloys' stiffness is still more than twice that of bone, so adjacent bone bears a greatly reduced load and may deteriorate. Because titanium is non-ferromagnetic, patients with titanium implants can be safely examined with magnetic resonance imaging (convenient for long-term implants). Preparing titanium for implantation in the body involves subjecting it to a high-temperature plasma (physics), plasma arc which removes the surface atoms, exposing fresh titanium that is instantly oxidized. Modern advancements in additive manufacturing techniques have increased potential for titanium use in orthopedic implant applications. Complex implant scaffold designs can be 3D-printed using titanium alloys, which allows for more patient-specific applications and increased implant osseointegration. Titanium is used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other products where high strength and low weight are desirable. Titanium dioxide nanoparticles are widely used in electronics and the delivery of pharmaceutical drug, pharmaceuticals and cosmetics.


Nuclear waste storage

Because of its corrosion resistance, containers made of titanium have been studied for the long-term storage of nuclear waste. Containers lasting more than 100,000 years are thought possible with manufacturing conditions that minimize material defects. A titanium "drip shield" could also be installed over containers of other types to enhance their longevity.


Precautions

Titanium is non-toxic even in large doses and does not play any natural role inside the human body. An estimated quantity of 0.8 milligrams of titanium is ingested by humans each day, but most passes through without being absorbed in the tissues. It does, however, sometimes bioaccumulation, bio-accumulate in tissues that contain silica. One study indicates a possible connection between titanium and yellow nail syndrome. As a powder or in the form of metal shavings, titanium metal poses a significant fire hazard and, when heated in air, an explosion hazard. Water and carbon dioxide are ineffective for extinguishing a titanium fire; fire classes, Class D dry powder agents must be used instead. When used in the production or handling of chlorine, titanium should not be exposed to dry chlorine gas because it may result in a titanium–chlorine fire. Titanium can catch fire when a fresh, non-oxidized surface comes in contact with liquid oxygen.


Function in plants

An unknown mechanism in plants may use titanium to stimulate the production of carbohydrates and encourage growth. This may explain why most plants contain about 1 part per million (ppm) of titanium, food plants have about 2 ppm, and horsetail and Urtica, nettle contain up to 80 ppm.


See also

* List of countries by titanium production * Suboxide * Titanium in Africa * Titanium in zircon geothermometry * Titanium Man * VSMPO-AVISMA


Footnotes


References


Bibliography

* * * * * *


External links


"Titanium: Our Next Major Metal"
''Popular Science'', October 1950—one of first general public detailed articles on Titanium
Titanium
at ''The Periodic Table of Videos'' (University of Nottingham)
Titanium
at The Essential Chemical Industry – online (CIEC Promoting Science at the University of York)
International Titanium Association





Metal of the gods
{{Authority control Titanium, Aerospace materials Biomaterials Chemical elements with hexagonal close-packed structure Chemical elements Native element minerals Pyrotechnic fuels Transition metals