HOME

TheInfoList



OR:

Tin Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
(50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a " magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994) and tin-132 (132Sn), which are both " doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.


List of isotopes

, -id=Tin-98 , 98Sn , style="text-align:right" , 50 , style="text-align:right" , 48 , , , , , 0+ , , , -id=Tin-99 , rowspan=2, 99SnHeaviest known nuclide with more protons than neutrons , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 49 , rowspan=2, 98.94850(63)# , rowspan=2, 24(4) ms , β+ (95%) , 99In , rowspan=2, 9/2+# , rowspan=2, , rowspan=2, , - , β+, p (5%) , 98Cd , -id=Tin-100 , rowspan=2, 100SnHeaviest nuclide with equal numbers of protons and neutrons with no observed α decay , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 50 , rowspan=2, 99.93865(26) , rowspan=2, 1.18(8) s , β+ (>83%) , 100In , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (<17%) , 99Cd , -id=Tin-101 , rowspan=2, 101Sn , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 51 , rowspan=2, 100.93526(32) , rowspan=2, 2.22(5) s , β+ , 101In , rowspan=2, (7/2+) , rowspan=2, , rowspan=2, , - , β+, p? , 100Cd , -id=Tin-102 , 102Sn , style="text-align:right" , 50 , style="text-align:right" , 52 , 101.93029(11) , 3.8(2) s , β+ , 102In , 0+ , , , -id=Tin-102m , style="text-indent:1em" , 102mSn , colspan="3" style="text-indent:2em" , 2017(2) keV , 367(8) ns , IT , 102Sn , (6+) , , , -id=Tin-103 , rowspan=2, 103Sn , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 53 , rowspan=2, 102.92797(11)# , rowspan=2, 7.0(2) s , β+ (98.8%) , 103In , rowspan=2, 5/2+# , rowspan=2, , rowspan=2, , - , β+, p (1.2%) , 102Cd , -id=Tin-104 , 104Sn , style="text-align:right" , 50 , style="text-align:right" , 54 , 103.923105(6) , 20.8(5) s , β+ , 104In , 0+ , , , -id=Tin-105 , rowspan=2, 105Sn , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 55 , rowspan=2, 104.921268(4) , rowspan=2, 32.7(5) s , β+ , 105In , rowspan=2, (5/2+) , rowspan=2, , rowspan=2, , - , β+, p (0.011%) , 104Cd , -id=Tin-106 , 106Sn , style="text-align:right" , 50 , style="text-align:right" , 56 , 105.916957(5) , 1.92(8) min , β+ , 106In , 0+ , , , -id=Tin-107 , 107Sn , style="text-align:right" , 50 , style="text-align:right" , 57 , 106.915714(6) , 2.90(5) min , β+ , 107In , (5/2+) , , , -id=Tin-108 , 108Sn , style="text-align:right" , 50 , style="text-align:right" , 58 , 107.911894(6) , 10.30(8) min , β+ , 108In , 0+ , , , -id=Tin-109 , 109Sn , style="text-align:right" , 50 , style="text-align:right" , 59 , 108.911293(9) , 18.1(2) min , β+ , 109In , 5/2+ , , , -id=Tin-110 , 110Sn , style="text-align:right" , 50 , style="text-align:right" , 60 , 109.907845(15) , 4.154(4) h , EC , 110In , 0+ , , , -id=Tin-111 , 111Sn , style="text-align:right" , 50 , style="text-align:right" , 61 , 110.907741(6) , 35.3(6) min , β+ , 111In , 7/2+ , , , -id=Tin-111m , style="text-indent:1em" , 111mSn , colspan="3" style="text-indent:2em" , 254.71(4) keV , 12.5(10) μs , IT , 111Sn , 1/2+ , , , -id=Tin-112 , 112Sn , style="text-align:right" , 50 , style="text-align:right" , 62 , 111.9048249(3) , colspan=3 align=center,
Observationally Stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
Believed to decay by β+β+ to 112Cd , 0+ , 0.0097(1) , , -id=Tin-113 , 113Sn , style="text-align:right" , 50 , style="text-align:right" , 63 , 112.9051759(17) , 115.08(4) d , β+ , 113In , 1/2+ , , , -id=Tin-113m , rowspan=2 style="text-indent:1em" , 113mSn , rowspan=2 colspan="3" style="text-indent:2em" , 77.389(19) keV , rowspan=2, 21.4(4) min , IT (91.1%) , 113Sn , rowspan=2, 7/2+ , rowspan=2, , rowspan=2, , - , β+ (8.9%) , 113In , -id=Tin-114 , 114Sn , style="text-align:right" , 50 , style="text-align:right" , 64 , 113.90278013(3) , colspan=3 align=center, Stable , 0+ , 0.0066(1) , , -id=Tin-114m , style="text-indent:1em" , 114mSn , colspan="3" style="text-indent:2em" , 3087.37(7) keV , 733(14) ns , IT , 114Sn , 7− , , , -id=Tin-115 , 115Sn , style="text-align:right" , 50 , style="text-align:right" , 65 , 114.903344695(16) , colspan=3 align=center, Stable , 1/2+ , 0.0034(1) , , -id=Tin-115m1 , style="text-indent:1em" , 115m1Sn , colspan="3" style="text-indent:2em" , 612.81(4) keV , 3.26(8) μs , IT , 115Sn , 7/2+ , , , -id=Tin-115m2 , style="text-indent:1em" , 115m2Sn , colspan="3" style="text-indent:2em" , 713.64(12) keV , 159(1) μs , IT , 115Sn , 11/2− , , , -id=Tin-116 , 116Sn , style="text-align:right" , 50 , style="text-align:right" , 66 , 115.90174283(10) , colspan=3 align=center, Stable , 0+ , 0.1454(9) , , -id=Tin-116m1 , style="text-indent:1em" , 116m1Sn , colspan="3" style="text-indent:2em" , 2365.975(21) keV , 348(19) ns , IT , 116Sn , 5− , , , -id=Tin-116m2 , style="text-indent:1em" , 116m2Sn , colspan="3" style="text-indent:2em" , 3547.16(17) keV , 833(30) ns , IT , 116Sn , 10+ , , , -id=Tin-117 , 117Sn
Fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
, style="text-align:right" , 50 , style="text-align:right" , 67 , 116.90295404(52) , colspan=3 align=center, Stable , 1/2+ , 0.0768(7) , , -id=Tin-117m1 , style="text-indent:1em" , 117m1Sn , colspan="3" style="text-indent:2em" , 314.58(4) keV , 13.939(24) d , IT , 117Sn , 11/2− , , , -id=Tin-117m2 , style="text-indent:1em" , 117m2Sn , colspan="3" style="text-indent:2em" , 2406.4(4) keV , 1.75(7) μs , IT , 117Sn , (19/2+) , , , -id=Tin-118 , 118Sn , style="text-align:right" , 50 , style="text-align:right" , 68 , 117.90160663(54) , colspan=3 align=center, Stable , 0+ , 0.2422(9) , , -id=Tin-118m1 , style="text-indent:1em" , 118m1Sn , colspan="3" style="text-indent:2em" , 2574.91(4) keV , 230(10) ns , IT , 118Sn , 7− , , , -id=Tin-118m2 , style="text-indent:1em" , 118m2Sn , colspan="3" style="text-indent:2em" , 3108.06(22) keV , 2.52(6) μs , IT , 118Sn , (10+) , , , -id=Tin-119 , 119Sn , style="text-align:right" , 50 , style="text-align:right" , 69 , 118.90331127(78) , colspan=3 align=center, Stable , 1/2+ , 0.0859(4) , , -id=Tin-119m1 , style="text-indent:1em" , 119m1Sn , colspan="3" style="text-indent:2em" , 89.531(13) keV , 293.1(7) d , IT , 119Sn , 11/2− , , , -id=Tin-119m2 , style="text-indent:1em" , 119m2Sn , colspan="3" style="text-indent:2em" , 2127.0(10) keV , 9.6(12) μs , IT , 119Sn , (19/2+) , , , -id=Tin-119m3 , style="text-indent:1em" , 119m3Sn , colspan="3" style="text-indent:2em" , 2369.0(3) keV , 96(9) ns , IT , 119Sn , 23/2+ , , , -id=Tin-120 , 120Sn , style="text-align:right" , 50 , style="text-align:right" , 70 , 119.90220256(99) , colspan=3 align=center, Stable , 0+ , 0.3258(9) , , -id=Tin-120m1 , style="text-indent:1em" , 120m1Sn , colspan="3" style="text-indent:2em" , 2481.63(6) keV , 11.8(5) μs , IT , 120Sn , 7− , , , -id=Tin-120m2 , style="text-indent:1em" , 120m2Sn , colspan="3" style="text-indent:2em" , 2902.22(22) keV , 6.26(11) μs , IT , 120Sn , 10+ , , , -id=Tin-121 , 121Sn , style="text-align:right" , 50 , style="text-align:right" , 71 , 120.9042435(11) , 27.03(4) h , β , 121Sb , 3/2+ , , , -id=Tin-121m1 , rowspan=2 style="text-indent:1em" , 121m1Sn , rowspan=2 colspan="3" style="text-indent:2em" , 6.31(6) keV , rowspan=2, 43.9(5) y , IT (77.6%) , 121Sn , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , β (22.4%) , 121Sb , -id=Tin-121m2 , style="text-indent:1em" , 121m2Sn , colspan="3" style="text-indent:2em" , 1998.68(13) keV , 5.3(5) μs , IT , 121Sn , 19/2+ , , , -id=Tin-121m3 , style="text-indent:1em" , 121m3Sn , colspan="3" style="text-indent:2em" , 2222.0(2) keV , 520(50) ns , IT , 121Sn , 23/2+ , , , -id=Tin-121m4 , style="text-indent:1em" , 121m4Sn , colspan="3" style="text-indent:2em" , 2833.9(2) keV , 167(25) ns , IT , 121Sn , 27/2− , , , -id=Tin-122 , 122Sn , style="text-align:right" , 50 , style="text-align:right" , 72 , 121.9034455(26) , colspan=3 align=center, Observationally StableBelieved to undergo ββ decay to 122Te , 0+ , 0.0463(3) , , -id=Tin-122m1 , style="text-indent:1em" , 122m1Sn , colspan="3" style="text-indent:2em" , 2409.03(4) keV , 7.5(9) μs , IT , 122Sn , 7− , , , -id=Tin-122m2 , style="text-indent:1em" , 122m2Sn , colspan="3" style="text-indent:2em" , 2765.5(3) keV , 62(3) μs , IT , 122Sn , 10+ , , , -id=Tin-122m3 , style="text-indent:1em" , 122m3Sn , colspan="3" style="text-indent:2em" , 4721.2(3) keV , 139(9) ns , IT , 122Sn , 15− , , , -id=Tin-123 , 123Sn , style="text-align:right" , 50 , style="text-align:right" , 73 , 122.9057271(27) , 129.2(4) d , β , 123Sb , 11/2− , , , -id=Tin-123m1 , style="text-indent:1em" , 123m1Sn , colspan="3" style="text-indent:2em" , 24.6(4) keV , 40.06(1) min , β , 123Sb , 3/2+ , , , -id=Tin-123m2 , style="text-indent:1em" , 123m2Sn , colspan="3" style="text-indent:2em" , 1944.90(12) keV , 7.4(26) μs , IT , 123Sn , 19/2+ , , , -id=Tin-123m3 , style="text-indent:1em" , 123m3Sn , colspan="3" style="text-indent:2em" , 2152.66(19) keV , 6 μs , IT , 123Sn , 23/2+ , , , -id=Tin-123m4 , style="text-indent:1em" , 123m4Sn , colspan="3" style="text-indent:2em" , 2712.47(21) keV , 34 μs , IT , 123Sn , 27/2− , , , -id=Tin-124 , 124Sn , style="text-align:right" , 50 , style="text-align:right" , 74 , 123.9052796(14) , colspan=3 align=center, Observationally StableBelieved to undergo ββ decay to 124Te with a half-life over 1×1017 years , 0+ , 0.0579(5) , , -id=Tin-124m1 , style="text-indent:1em" , 124m1Sn , colspan="3" style="text-indent:2em" , 2204.620(23) keV , 270(60) ns , IT , 124Sn , 5- , , , -id=Tin-124m2 , style="text-indent:1em" , 124m2Sn , colspan="3" style="text-indent:2em" , 2324.96(4) keV , 3.1(5) μs , IT , 124Sn , 7− , , , -id=Tin-124m3 , style="text-indent:1em" , 124m3Sn , colspan="3" style="text-indent:2em" , 2656.6(3) keV , 51(3) μs , IT , 124Sn , 10+ , , , -id=Tin-124m4 , style="text-indent:1em" , 124m4Sn , colspan="3" style="text-indent:2em" , 4552.4(3) keV , 260(25) ns , IT , 124Sn , 15− , , , -id=Tin-125 , 125Sn , style="text-align:right" , 50 , style="text-align:right" , 75 , 124.9077894(14) , 9.634(15) d , β , 125Sb , 11/2− , , , -id=Tin-125m1 , style="text-indent:1em" , 125m1Sn , colspan="3" style="text-indent:2em" , 27.50(14) keV , 9.77(25) min , β , 125Sb , 3/2+ , , , -id=Tin-125m2 , style="text-indent:1em" , 125m2Sn , colspan="3" style="text-indent:2em" , 1892.8(3) keV , 6.2(2) μs , IT , 125Sn , 19/2+ , , , -id=Tin-125m3 , style="text-indent:1em" , 125m3Sn , colspan="3" style="text-indent:2em" , 2059.5(4) keV , 650(60) ns , IT , 125Sn , 23/2+ , , , -id=Tin-125m4 , style="text-indent:1em" , 125m4Sn , colspan="3" style="text-indent:2em" , 2623.5(5) keV , 230(17) ns , IT , 125Sn , 27/2− , , , - , 126Sn
Long-lived fission product Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from hum ...
, style="text-align:right" , 50 , style="text-align:right" , 76 , 125.907658(11) , 2.30(14)×105 y , β , 126Sb , 0+ , < 10−14 , , -id=Tin-126m1 , style="text-indent:1em" , 126m1Sn , colspan="3" style="text-indent:2em" , 2218.99(8) keV , 6.1(7) μs , IT , 126Sn , 7− , , , -id=Tin-126m2 , style="text-indent:1em" , 126m2Sn , colspan="3" style="text-indent:2em" , 2564.5(5) keV , 7.6(3) μs , IT , 126Sn , 10+ , , , -id=Tin-126m3 , style="text-indent:1em" , 126m3Sn , colspan="3" style="text-indent:2em" , 4347.4(4) keV , 114(2) ns , IT , 126Sn , 15− , , , -id=Tin-127 , 127Sn , style="text-align:right" , 50 , style="text-align:right" , 77 , 126.9103917(99) , 2.10(4) h , β , 127Sb , 11/2− , , , -id=Tin-127m1 , style="text-indent:1em" , 127m1Sn , colspan="3" style="text-indent:2em" , 5.07(6) keV , 4.13(3) min , β , 127Sb , 3/2+ , , , -id=Tin-127m2 , style="text-indent:1em" , 127m2Sn , colspan="3" style="text-indent:2em" , 1826.67(16) keV , 4.52(15) μs , IT , 127Sn , 19/2+ , , , -id=Tin-127m3 , style="text-indent:1em" , 127m3Sn , colspan="3" style="text-indent:2em" , 1930.97(17) keV , 1.26(15) μs , IT , 127Sn , (23/2+) , , , -id=Tin-127m4 , style="text-indent:1em" , 127m4Sn , colspan="3" style="text-indent:2em" , 2552.4(10) keV , 250 (30) ns , IT , 127Sn , (27/2−) , , , -id=Tin-128 , 128Sn , style="text-align:right" , 50 , style="text-align:right" , 78 , 127.910508(19) , 59.07(14) min , β , 128Sb , 0+ , , , -id=Tin-128m1 , style="text-indent:1em" , 128m1Sn , colspan="3" style="text-indent:2em" , 2091.50(11) keV , 6.5(5) s , IT , 128Sn , 7− , , , -id=Tin-128m2 , style="text-indent:1em" , 128m2Sn , colspan="3" style="text-indent:2em" , 2491.91(17) keV , 2.91(14) μs , IT , 128Sn , 10+ , , , -id=Tin-128m3 , style="text-indent:1em" , 128m3Sn , colspan="3" style="text-indent:2em" , 4099.5(4) keV , 220(30) ns , IT , 128Sn , (15−) , , , -id=Tin-129 , 129Sn , style="text-align:right" , 50 , style="text-align:right" , 79 , 128.913482(19) , 2.23(4) min , β , 129Sb , 3/2+ , , , -id=Tin-129m1 , style="text-indent:1em" , 129m1Sn , colspan="3" style="text-indent:2em" , 35.15(5) keV , 6.9(1) min , β , 129Sb , 11/2− , , , -id=Tin-129m2 , style="text-indent:1em" , 129m2Sn , colspan="3" style="text-indent:2em" , 1761.6(10) keV , 3.49(11) μs , IT , 129Sn , (19/2+) , , , -id=Tin-129m3 , style="text-indent:1em" , 129m3Sn , colspan="3" style="text-indent:2em" , 1802.6(10) keV , 2.22(13) μs , IT , 129Sn , 23/2+ , , , -id=Tin-129m4 , style="text-indent:1em" , 129m4Sn , colspan="3" style="text-indent:2em" , 2552.9(11) keV , 221(18) ns , IT , 129Sn , (27/2−) , , , -id=Tin-130 , 130Sn , style="text-align:right" , 50 , style="text-align:right" , 80 , 129.9139745(20) , 3.72(7) min , β , 130Sb , 0+ , , , -id=Tin-130m1 , style="text-indent:1em" , 130m1Sn , colspan="3" style="text-indent:2em" , 1946.88(10) keV , 1.7(1) min , β , 130Sb , 7− , , , -id=Tin-130m2 , style="text-indent:1em" , 130m2Sn , colspan="3" style="text-indent:2em" , 2434.79(12) keV , 1.501(17) μs , IT , 130Sn , (10+) , , , -id=Tin-131 , 131Sn , style="text-align:right" , 50 , style="text-align:right" , 81 , 130.917053(4) , 56.0(5) s , β , 131Sb , 3/2+ , , , -id=Tin-131m1 , rowspan=2 style="text-indent:1em" , 131m1Sn , rowspan=2 colspan="3" style="text-indent:2em" , 65.1(3) keV , rowspan=2, 58.4(5) s , β , 131Sb , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , IT? , 131Sn , -id=Tin-131m2 , style="text-indent:1em" , 131m2Sn , colspan="3" style="text-indent:2em" , 4670.0(4) keV , 316(5) ns , IT , 131Sn , (23/2−) , , , -id=Tin-132 , 132Sn , style="text-align:right" , 50 , style="text-align:right" , 82 , 131.9178239(21) , 39.7(8) s , β , 132Sb , 0+ , , , -id=Tin-132m , style="text-indent:1em" , 132mSn , colspan="3" style="text-indent:2em" , 4848.52(20) keV , 2.080(16) μs , IT , 132Sn , 8+ , , , -id=Tin-133 , rowspan=2, 133Sn , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 83 , rowspan=2, 132.9239138(20) , rowspan=2, 1.37(7) s , β (99.97%) , 133Sb , rowspan=2, 7/2− , rowspan=2, , rowspan=2, , - , β n (.0294%) , 132Sb , -id=Tin-134 , rowspan=2, 134Sn , rowspan=2 style="text-align:right" , 50 , rowspan=2 style="text-align:right" , 84 , rowspan=2, 133.928680(3) , rowspan=2, 0.93(8) s , β (83%) , 134Sb , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , βn (17%) , 133Sb , -id=Tin-134m , style="text-indent:1em" , 134mSn , colspan="3" style="text-indent:2em" , 1247.4(5) keV , 87(8) ns , IT , 134Sn , 6+ , , , -id=Tin-135 , rowspan=3, 135Sn , rowspan=3 style="text-align:right" , 50 , rowspan=3 style="text-align:right" , 85 , rowspan=3, 134.934909(3) , rowspan=3, 515(5) ms , β (79%) , 135Sb , rowspan=3, 7/2−# , rowspan=3, , rowspan=3, , - , βn (21%) , 134Sb , - , β2n? , 133Sb , -id=Tin-136 , rowspan=3, 136Sn , rowspan=3 style="text-align:right" , 50 , rowspan=3 style="text-align:right" , 86 , rowspan=3, 135.93970(22)# , rowspan=3, 355(18) ms , β (72%) , 136Sb , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , βn (28%) , 135Sb , - , β2n? , 134Sb , -id=Tin-137 , rowspan=3, 137Sn , rowspan=3 style="text-align:right" , 50 , rowspan=3 style="text-align:right" , 87 , rowspan=3, 136.94616(32)# , rowspan=3, 249(15) ms , β (52%) , 137Sb , rowspan=3, 5/2−# , rowspan=3, , rowspan=3, , - , βn (48%) , 136Sb , - , β2n? , 135Sb , -id=Tin-138 , rowspan=3, 138Sn , rowspan=3 style="text-align:right" , 50 , rowspan=3 style="text-align:right" , 88 , rowspan=3, 137.95114(43)# , rowspan=3, 148(9) ms , β (64%) , 138Sb , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , βn (36%) , 137Sb , - , β2n? , 136Sb , -id=Tin-138m , style="text-indent:1em" , 138mSn , colspan="3" style="text-indent:2em" , 1344(2) keV , 210(45) ns , IT , 138Sn , (6+) , , , -id=Tin-139 , rowspan=3, 139Sn , rowspan=3 style="text-align:right" , 50 , rowspan=3 style="text-align:right" , 89 , rowspan=3, 138.95780(43)# , rowspan=3, 120(38) ms , β , 139Sb , rowspan=3, 5/2−# , rowspan=3, , rowspan=3, , - , βn? , 138Sb , - , β2n? , 137Sb , -id=Tin-140 , rowspan=3, 140Sn , rowspan=3 style="text-align:right" , 50 , rowspan=3 style="text-align:right" , 90 , rowspan=3, 139.96297(32)# , rowspan=3, 50# ms
550 ns, β? , 140Sb , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , βn? , 139Sb , - , β2n? , 138Sb


Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).


Tin-121m

Tin-121m (121mSn) is a radioisotope and
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have Half-life, half-lives of ...
of tin with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 43.9 years. In a normal
thermal reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and stru ...
, it has a very low
fission product yield Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission. Yield can be broken down by: # Individual i ...
; thus, this isotope is not a significant contributor to
nuclear waste Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
.
Fast fission Fast fission is fission that occurs when a heavy atom absorbs a high-energy neutron, called a fast neutron, and splits. Most fissionable materials need thermal neutrons, which move more slowly. Fast reactors vs. thermal reactors Fast neutron r ...
or fission of some heavier
actinides The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)


Tin-126

Tin-126 is a
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
of tin and one of the only seven
long-lived fission product Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from hum ...
s of uranium and plutonium. While tin-126's
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 230,000 years translates to a low
specific activity Specific activity (symbol ''a'') is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activi ...
of gamma radiation, its short-lived
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
s, two
isomers In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the existence or possibili ...
of antimony-126, emit a cascade of hard
gamma radiation A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
- at least 3 photons over 400 keV per decay - before reaching stable tellurium-126, making external exposure to tin-126 a potential concern. Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current
nuclear power plant A nuclear power plant (NPP), also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power st ...
s, produce it at only low yield, since
slow neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s almost always fission 235U or 239Pu into unequal halves. Fast fission in a
fast reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow t ...
or
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
, or fission of some heavy
minor actinide Minor may refer to: Common meanings * Minor (law), a person not under the age of certain legal activities. * Academic minor, a secondary field of study in undergraduate education Mathematics * Minor (graph theory), a relation of one graph to ...
s such as
californium Californium is a synthetic chemical element; it has symbol Cf and atomic number 98. It was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory) by bombarding curium with al ...
, will produce it at higher yields.
ANL factsheet


See also

Daughter products other than tin *
Isotopes of antimony Antimony (Sb) occurs in two stable isotopes, Sb and Sb. There are 37 artificial radioactive isotopes, the longest-lived of which are Sb, with a half-life of 2.75856 years; Sb, with half-life 60.2 days; and Sb, with half-life 12.35 days. All other ...
*
Isotopes of indium Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted ag ...
*
Isotopes of cadmium Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two ...


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from: ** ** ** {{Navbox element isotopes Tin
Tin Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...