Time Projection Chamber
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, a time projection chamber (TPC) is a type of particle detector that uses a combination of
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
s and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory or interaction.


The original design

The original TPC was invented by David R. Nygren, an American physicist, at Lawrence Berkeley Laboratory in the late 1970s. Its first major application was in the PEP-4 detector, which studied 29 GeV electron–positron collisions at the PEP storage ring at SLAC. A time projection chamber consists of a gas-filled detection volume in an electric field with a position-sensitive electron collection system. The original design (and the one most commonly used) is a cylindrical chamber with multi-wire proportional chambers (MWPC) as endplates. Along its length, the chamber is divided into halves by means of a central high-voltage
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
disc, which establishes an
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
between the center and the end plates. Furthermore, a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
is often applied along the length of the cylinder, parallel to the electric field, in order to minimize the diffusion of the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s coming from the
ionization Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
of the gas. On passing through the detector gas, a particle will produce primary ionization along its track. The ''z'' coordinate (along the cylinder axis) is determined by measuring the drift time from the ionization event to the MWPC at the end. This is done using the usual technique of a drift chamber. The MWPC at the end is arranged with the
anode An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
wires in the
azimuth An azimuth (; from ) is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system. Mathematically, the relative position vector from an observer ( origin) to a point ...
al direction, ''θ'', which provides information on the radial coordinate, ''r''. To obtain the azimuthal direction, each
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
plane is divided into strips along the radial direction. In recent years other means of position-sensitive electron amplification and detection have become more widely used, especially in conjunction with the increased application of time projection chambers in
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies th ...
. These usually combine a segmented anode plate with either just a Frisch gridDemonchy et al. 2007. or an active electron-multiplication element like a gas electron multiplier.Fenker et al. 2008, Laird et al. 2007. These newer TPCs also depart from the traditional geometry of a cylinder with an axial field in favour of a flat geometry or a cylinder with a radial field. Earlier researchers in particle physics also usually made use of a more simplified box-shaped geometry arranged directly above or below the beam line, such as in the
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
NA49 and NA35 experiments.


The Liquid Argon Time Projection Chamber (LArTPC)

In 1974, William J. Willis and Veljko Radeka demonstrated that total absorption calorimetry was possible in liquid
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
detectors without the amplification that normally occurs in a
gaseous ionization detector Gaseous ionization detectors are radiation detection instruments used in particle physics to detect the presence of ionizing particles, and in radiation protection applications to measure ionizing radiation. They use the ionising effect of radia ...
. This critical technology enabled the possibility of a time projection chamber based on Nygren's original design, but using liquid argon as the sensitive medium instead of gas. In 1976, Herbert H. Chen, with collaborators at
University of California, Irvine The University of California, Irvine (UCI or UC Irvine) is a Public university, public Land-grant university, land-grant research university in Irvine, California, United States. One of the ten campuses of the University of California system, U ...
and the
California Institute of Technology The California Institute of Technology (branded as Caltech) is a private research university in Pasadena, California, United States. The university is responsible for many modern scientific advancements and is among a small group of institutes ...
, proposed one of the earliest uses of liquid argon in a time projection chamber (LArTPC). Chen's initial goals with such a detector were to study neutrino-electron scattering, but the goals evolved to measure solar or cosmic neutrinos or proton decay. In 1977, Carlo Rubbia independently, and nearly simultaneously, proposed to construct an LArTPC at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
for rare event particle physics experiments.


Detector design and properties

Liquid argon is advantageous as a sensitive medium for several reasons.Acciarri et al. 2015. The fact that argon is a noble element and therefore has a vanishing
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
means that
electrons The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
produced by ionizing
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
will not be absorbed as they drift toward the detector readout. Argon also scintillates when an energetic charged particle passes by, releasing a number of scintillation photons that is proportional to the energy deposited in the argon by the passing particle. Liquid argon is also relatively inexpensive, making large-scale projects economically feasible. However, one of the primary motivations for using liquid argon as a sensitive medium is its density. Liquid argon is around one thousand times denser than the gas used in Nygren's TPC design, which increases the likelihood of a particle interacting in a detector by a factor of around one thousand. This feature is particularly useful in
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
physics, where neutrino–
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
interaction cross sections are small. The body of a typical LArTPC is formed of three parts. On one side of the detector is a high-
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
cathode plane, used to establish a drift electric field across the TPC. Although the exact
electric potential Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
at which this is set is dependent on the detector geometry, this high-voltage cathode typically produces a drift field of 500 V/cm across the detector. On the side opposite of the cathode plane is a set of anode wire planes set at potentials much higher (less negative) than that of the cathode. Each plane is separated from its neighbors by a small gap, usually on the order of 1 cm. A plane consists of many parallel conducting wires spaced by a few millimeters, and the angle at which the wires are oriented relative to the vertical varies from plane to plane. Together, these planes read out signals from the drift electrons. For a detector with ''N'' anode wire planes, the inner ''N'' − 1 planes are called induction planes. These are set at lower (more negative) potentials than the outer plane, allowing drift electrons to pass through them, inducing signals that are used for event reconstruction. The outer plane is called the collection plane because the drift electrons are collected on these wires, producing additional signals. Having multiple planes with different wire orientations permits two-dimensional event reconstruction, while the third dimension is found from electron drift times. The third part is a field cage between the cathode and anode. This field cage maintains a uniform electric field between the cathode and the anode, so that drift electron trajectories deviate as little as possible from the shortest path between the point of ionization and the anode plane. This is intended to prevent distortion of particle trajectory during event reconstruction. A light-collection system often accompanies the basic LArTPC as a means of extracting more information from an event by scintillation light. It can also play an important role in triggering, because it collects scintillation light only nanoseconds after the particle passes through the detector. This is comparatively (on the order of 1000 times) shorter than the time taken by the freed electrons to drift to the wire planes, so it is often sufficient to demarcate the collection time of scintillation photons as a trigger time (''t''0) for an event. With this trigger time, one can then find electron drift times, which enables three-dimensional reconstruction of an event. While such systems are not the only means by which a LArTPC can identify a trigger time, they are necessary for studying phenomena like supernovae and proton decay, where the particles undergoing decay or interaction are not produced in a human-made accelerator and the timing of a beam of particles is therefore not known. Photomultiplier tubes, light guides, and silicon photomultipliers are examples of instruments used to collect this light. These are typically positioned just outside the drift volume.


Signal readout

In a typical LArTPC, each wire in each anode plane is part of an RC circuit, with the wire itself located between the
resistor A resistor is a passive two-terminal electronic component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
and
capacitor In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term st ...
. The other end of the resistor is wired to a bias voltage, and the other end of the capacitor is wired to the front-end electronics. The front-end electronics amplify and digitize the current in the circuit. This amplified and digitized current as a function of time is the "signal" that is passed to the event reconstruction. For a given anode plane wire, the signal produced will have a specific form that depends on whether the wire is located in an induction plane or in a collection plane. As a drift electron moves toward a wire in an induction plane, it induces a current in the wire, producing a "bump" in output current. As the electron moves away from a wire, it induces a current in the opposite direction, producing an output "bump" of the opposite sign as the first. The result is a bipolar signal.Joshi, J., Qian, X., 2015. In contrast, signals for a collection plane wire are unipolar, since electrons do not pass by the wire but are instead "collected" by it. For both of these geometries, a larger signal amplitude implies that more drift electrons either passed by the wire (for induction planes) or were collected by it (for the collection plane). The signal readout of all of the wires in a given anode plane can be organized into a 2D picture of a particle interaction. Such a picture is a projection of the 3D particle interaction onto a 2D plane whose
normal vector In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the infinite straight line perpendicular to the tangent line to the cu ...
is parallel to the wires in the specified anode plane. The 2D projections corresponding to each of the anode planes are combined to fully reconstruct the 3D interaction.


Dual-phase TPC

The technique itself was first developed for radiation detection using argon in the early 1970s. The ZEPLIN programme pioneered the use of two-phase technology for WIMP searches. The
XENON Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
and LUX series of detectors represent the state-of the art implementation of this instrument in physics.


Dark Matter Time Projection Chamber

The Dark Matter Time Projection Chamber is an experiment for direct detection of
weakly interacting massive particles Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, it is an elementary particle which interacts via gravity an ...
(WIMPs), one of the most favored candidates for
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
. The experiment uses a low-pressure time projection chamber in order to extract the original direction of potential dark matter events. The collaboration includes physicists from the
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
(MIT),
Boston University Boston University (BU) is a Private university, private research university in Boston, Massachusetts, United States. BU was founded in 1839 by a group of Boston Methodism, Methodists with its original campus in Newbury (town), Vermont, Newbur ...
(BU),
Brandeis University Brandeis University () is a Private university, private research university in Waltham, Massachusetts, United States. It is located within the Greater Boston area. Founded in 1948 as a nonsectarian, non-sectarian, coeducational university, Bra ...
, and Royal Holloway University of London. Several prototype detectors have been built and tested in laboratories at MIT and BU. The collaboration took its first data in an underground laboratory at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico in Fall, 2010. Dark Matter Time Projection Chamber published first results from a surface run in 2010, setting a spin-dependent cross section limit.


Notes


References

* * * * * *


Further reading

*{{cite journal , author=Spencer Klein , date=27 January 2004 , url=http://cerncourier.com/cws/article/cern/29014 , title=The time projection chamber turns 25 , journal= CERN Courier , volume=44 , issue=1 Particle detectors