A three-body force is a
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
that does not exist in a system of two objects but appears in a three-body system. In general, if the behaviour of a system of more than two objects cannot be described by the two-body interactions between all possible pairs, as a first approximation, the deviation is mainly due to a three-body force.
The fundamental
strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
does exhibit such behaviour, the most important example being the stability experimentally observed for the
helium-3
Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron (the most common isotope, helium-4, having two protons and two neutrons in contrast). Other than protium (ordinary hydrogen), helium-3 is th ...
isotope, which can be described as a 3-body quantum cluster entity of two protons and one neutron
NPin stable superposition. Direct evidence of a 3-body force in helium-3 is known
The existence of stable
NPcluster calls into question models of the atomic nucleus that restrict nucleon interactions within shells to 2-body phenomenon. The three-nucleon-interaction is fundamentally possible because
gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s, the mediators of the strong interaction, can couple to themselves. In
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
, the interactions between the three quarks that compose
hadron
In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s can be described in a
diquark
In particle physics, a diquark, or diquark correlation/clustering, is a hypothetical state of two quarks grouped inside a baryon (that consists of three quarks) (Lichtenberg 1982). Corresponding models of baryons are referred to as quark–diquar ...
model which might be equivalent to the hypothesis of a three-body force. There is growing evidence in the field of
nuclear physics
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Nuclear physics should not be confused with atomic physics, which studies the ...
that three-body forces exist among the
nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number).
Until the 1960s, nucleons w ...
s inside
atomic nuclei
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
for many different isotopes (three-nucleon force).
See also
*
Faddeev equation
*
Few-body systems
*
N-body problem
In physics, the -body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally.Leimanis and Minorsky: Our interest is with Leimanis, who first discusses some histo ...
*
Hydrogen molecular ion
*
Borromean nucleus
*
Efimov state The Efimov effect is an effect in the quantum mechanics of few-body systems predicted by the Russian theoretical physicist V. N. Efimov in 1970. Efimov’s effect is where three identical bosons interact, with the prediction of an infinite series ...
*
Chiral perturbation theory
Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation.
References
*
*
*
*
{{DEFAULTSORT:Three-Body Force
Force
Nuclear physics