Thermomechanical Processing
   HOME

TheInfoList



OR:

Thermomechanical processing is a
metallurgical Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the ...
process that combines mechanical or
plastic deformation In engineering, deformation (the change in size or shape of an object) may be ''elastic'' or ''plastic''. If the deformation is negligible, the object is said to be ''rigid''. Main concepts Occurrence of deformation in engineering application ...
process like
compression Compression may refer to: Physical science *Compression (physics), size reduction due to forces *Compression member, a structural element such as a column *Compressibility, susceptibility to compression * Gas compression *Compression ratio, of a ...
or
forging Forging is a manufacturing process involving the shaping of metal using localized compression (physics), compressive forces. The blows are delivered with a hammer (often a power hammer) or a die (manufacturing), die. Forging is often classif ...
,
rolling Rolling is a Motion (physics)#Types of motion, type of motion that combines rotation (commonly, of an Axial symmetry, axially symmetric object) and Translation (geometry), translation of that object with respect to a surface (either one or the ot ...
, etc. with thermal processes like heat-treatment, water quenching, heating and cooling at various rates into a single process.


Application in rebar steel

The quenching process produces a high strength bar from inexpensive low carbon steel. The process
quench In materials science, quenching is the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such ...
es the
surface layer The surface layer is the layer of a turbulent fluid most affected by interaction with a solid surface or the surface separating a gas and a liquid where the characteristics of the turbulence depend on distance from the interface. Surface layers a ...
of the bar, which pressurizes and deforms the crystal structure of intermediate layers, and simultaneously begins to temper the quenched layers using the heat from the bar's core. Steel billets 130mm² ("pencil ingots") are heated to approximately 1200°C to 1250°C in a reheat furnace. Then, they are progressively rolled to reduce the billets to the final size and shape of
reinforcing bar Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a Tension (physics), tension device added to concrete to form ''reinforced concrete'' and reinforced masonry structures to ...
. After the last rolling stand, the billet moves through a quench box. The quenching converts the billet's surface layer to
martensite Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation. Properties Mar ...
, and causes it to shrink. The shrinkage pressurizes the core, helping to form the correct crystal structures. The core remains hot, and austenitic. A microprocessor controls the water flow to the quench box, to manage the temperature difference through the cross-section of the bars. The correct temperature difference assures that all processes occur, and bars have the necessary mechanical properties. The bar leaves the quench box with a
temperature gradient A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature spatial gradient is a vector quantity with Dimensional analysis, ...
through its cross section. As the bar cools, heat flows from the bar's centre to its surface so that the bar's heat and pressure correctly tempers an intermediate ring of martensite and bainite. Finally, the slow cooling after quenching automatically tempers the austenitic core to ferrite and
pearlite Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite for ...
on the cooling bed. These bars therefore exhibit a variation in microstructure in their cross section, having strong, tough, tempered martensite in the surface layer of the bar, an intermediate layer of martensite and bainite, and a refined, tough and ductile ferrite and pearlite core. When the cut ends of TMT bars are etched in Nital (a mixture of
nitric acid Nitric acid is an inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into nitrogen oxide, oxides of nitrogen. Most com ...
and
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
), three distinct rings appear: 1. A tempered outer ring of martensite, 2. A semi-tempered middle ring of martensite and bainite, and 3. a mild circular core of bainite, ferrite and pearlite. This is the desired micro structure for quality construction rebar. In contrast, lower grades of rebar are twisted when cold, work hardening them to increase their strength. However, after thermo mechanical treatment (TMT), bars do not need more work hardening. As there is no twisting during TMT, no torsional stress occurs, and so torsional stress cannot form surface defects in TMT bars. Therefore TMT bars resist corrosion better than cold, twisted and deformed (CTD) bars. After thermomechanical processing, some grades in which TMT Bars can be covered includes Fe: 415 /500 /550/ 600. These are much stronger compared with conventional CTD Bars and give up to 20% more strength to concrete structure with same quantity of steel.


References

{{Reflist Steelmaking Metallurgical processes