In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a tetrahedral prism is a convex
uniform 4-polytope
In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedron, uniform polyhedra, and faces are regular polygons.
There are 47 non-Prism (geometry), prism ...
. This 4-polytope has 6
polyhedral
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surfa ...
cells: 2
tetrahedra
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
connected by 4
triangular prism
In geometry, a triangular prism or trigonal prism is a Prism (geometry), prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a ''right triangular prism''. A right triangul ...
s. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.
It is one of 18 uniform polyhedral prisms created by using uniform
prism
PRISM is a code name for a program under which the United States National Security Agency (NSA) collects internet communications from various U.S. internet companies. The program is also known by the SIGAD . PRISM collects stored internet ...
s to connect pairs of parallel
Platonic solid
In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (id ...
s and
Archimedean solid
The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They ...
s.
Images
Alternative names
# Tetrahedral dyadic prism (
Norman W. Johnson)
# Tepe (Jonathan Bowers: for tetrahedral prism)
# Tetrahedral hyperprism
# Digonal antiprismatic prism
# Digonal antiprismatic hyperprism
Structure
The tetrahedral prism is bounded by two tetrahedra and four triangular prisms. The triangular prisms are joined to each other via their square faces, and are joined to the two tetrahedra via their triangular faces.
Projections
The tetrahedron-first orthographic projection of the tetrahedral prism into 3D space has a tetrahedral projection envelope. Both tetrahedral cells project onto this tetrahedron, while the triangular prisms project to its faces.
The triangular-prism-first orthographic projection of the tetrahedral prism into 3D space has a projection envelope in the shape of a triangular prism. The two tetrahedral cells are projected onto the triangular ends of the prism, each with a vertex that projects to the center of the respective triangular face. An edge connects these two vertices through the center of the projection. The prism may be divided into three non-uniform triangular prisms that meet at this edge; these 3 volumes correspond with the images of three of the four triangular prismic cells. The last triangular prismic cell projects onto the entire projection envelope.
The edge-first orthographic projection of the tetrahedral prism into 3D space is identical to its triangular-prism-first parallel projection.
The square-face-first orthographic projection of the tetrahedral prism into 3D space has a cuboidal envelope (see diagram). Each triangular prismic cell projects onto half of the cuboidal volume, forming two pairs of overlapping images. The tetrahedral cells project onto the top and bottom square faces of the cuboid.
Related polytopes
It is the first in an infinite series of
uniform antiprismatic prism
In 4-dimensional geometry, a uniform antiprismatic prism or antiduoprism is a uniform 4-polytope with two Antiprism, uniform antiprism cells in two parallel 3-space hyperplanes, connected by Prism (geometry), uniform prisms cells between pairs of ...
s.
The tetrahedral prism, -1
31, is first in a dimensional series of uniform polytopes, expressed by
Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century.
Coxeter was born in England and educated ...
as k
31 series. The tetrahedral prism is the vertex figure for the second, the
rectified 5-simplex
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a Rectification (geometry), rectification of the regular 5-simplex.
There are three unique degrees of rectifications, including the zeroth, the 5-simplex its ...
. The fifth figure is a Euclidean honeycomb,
331, and the final is a noncompact hyperbolic honeycomb, 4
31. Each
uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform Facet (mathematics), facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the sam ...
in the sequence is the
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
of the next.
References
*
John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, (Chapter 26)
*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
External links
*
* {{KlitzingPolytopes, polychora.htm, 4D uniform polytopes (polychora), x x3o3o - tepe
Uniform 4-polytopes