The tangram () is a
dissection puzzle consisting of seven flat polygons, called ''tans'', which are put together to form shapes. The objective is to replicate a pattern (given only an outline) generally found in a puzzle book using all seven pieces without overlap. Alternatively the ''tans'' can be used to create original minimalist designs that are either appreciated for their inherent aesthetic merits or as the basis for challenging others to replicate its outline. It is reputed to have been invented in
China
China, officially the People's Republic of China (PRC), is a country in East Asia. With population of China, a population exceeding 1.4 billion, it is the list of countries by population (United Nations), second-most populous country after ...
sometime around the late 18th century and then carried over to
America
The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
and
Europe
Europe is a continent located entirely in the Northern Hemisphere and mostly in the Eastern Hemisphere. It is bordered by the Arctic Ocean to the north, the Atlantic Ocean to the west, the Mediterranean Sea to the south, and Asia to the east ...
by trading ships shortly after. It became very popular in Europe for a time, and then again during
World War I
World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
. It is one of the most widely recognized dissection puzzles in the world and has been used for various purposes including amusement, art, and education.
Etymology
The origin of the English word 'tangram' is unclear. One conjecture holds that it is a compound of the Greek element '-gram' derived from ''γράμμα'' ('written character, letter, that which is drawn') with the 'tan-' element being variously conjectured to be Chinese ''t'an'' 'to extend' or Cantonese ''t'ang'' 'Chinese'. Alternatively, the word may be derivative of the archaic English 'tangram' meaning "an odd, intricately contrived thing".
In either case, the first known use of the word is believed to be found in the 1848 book ''Geometrical Puzzle for the Young'' by mathematician and future Harvard University president
Thomas Hill. Hill likely coined the term in the same work, and vigorously promoted the word in numerous articles advocating for the puzzle's use in education, and in 1864 the word received official recognition in the English language when it was included in Noah Webster's
''American Dictionary''.
History
Origins
Despite its relatively recent emergence in the West, there is a much older tradition of dissection amusements in China which likely played a role in its inspiration. In particular, the modular banquet tables of the
Song dynasty
The Song dynasty ( ) was an Dynasties of China, imperial dynasty of China that ruled from 960 to 1279. The dynasty was founded by Emperor Taizu of Song, who usurped the throne of the Later Zhou dynasty and went on to conquer the rest of the Fiv ...
bear an uncanny resemblance to the playing pieces of the tangram and there were books dedicated to arranging them together to form pleasing patterns.
Several Chinese sources broadly report a well-known Song dynasty polymath Huang Bosi 黄伯思 who developed a form of entertainment for his dinner guests based on creative arrangements of six small tables called 宴几 or 燕几(''feast tables'' or ''swallow tables'' respectively). One diagram shows these as oblong rectangles, and other reports suggest a seventh table was added later, perhaps by a later inventor.
According to Western sources, however, the tangram's historical Chinese inventor is unknown except through the pen name Yang-cho-chu-shih (Dim-witted (?) recluse, recluse = 处士). It is believed that the puzzle was originally introduced in a book titled ''Ch'i chi'iao t'u'', which was already reported as lost in 1815 by Shan-chiao in his book ''New Figures of the Tangram''. Nevertheless, it is generally believed that the puzzle was invented about 20 years earlier.
The prominent third-century mathematician
Liu Hui
Liu Hui () was a Chinese mathematician who published a commentary in 263 CE on ''Jiu Zhang Suan Shu ( The Nine Chapters on the Mathematical Art).'' He was a descendant of the Marquis of Zixiang of the Eastern Han dynasty and lived in the state ...
made use of construction proofs in his works and some bear a striking resemblance to the subsequently developed banquet tables which in turn seem to anticipate the tangram. While there is no reason to suspect that tangrams were used in the proof of the
Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
, as is sometimes reported, it is likely that this style of geometric reasoning went on to exert an influence on Chinese cultural life that lead directly to the puzzle.
The early years of attempting to date the Tangram were confused by the popular but fraudulently written history by famed puzzle maker
Samuel Loyd in his 1908 ''The Eighth Book Of Tan''. This work contains many whimsical features that aroused both interest and suspicion amongst contemporary scholars who attempted to verify the account. By 1910 it was clear that it was a hoax. A letter dated from this year from the
Oxford Dictionary editor
Sir James Murray on behalf of a number of Chinese scholars to the prominent puzzlist
Henry Dudeney
Henry Ernest Dudeney (10 April 1857 – 23 April 1930) was an English author and mathematician who specialised in logic puzzles and mathematical games. He is known as one of the foremost creators of mathematical puzzles.
Early life
Dudene ...
reads "The result has been to show that the man Tan, the god Tan, and the Book of Tan are entirely unknown to Chinese literature, history or tradition." Along with its many strange details ''The Eighth Book of Tan's'' date of creation for the puzzle of 4000 years in antiquity had to be regarded as entirely baseless and false.
Reaching the Western world (1815–1820s)

The earliest extant tangram was given to the Philadelphia shipping magnate and congressman Francis Waln in 1802 but it was not until over a decade later that Western audiences, at large, would be exposed to the puzzle. In 1815, American Captain M. Donnaldson was given a pair of author Sang-Hsia-koi's books on the subject (one problem and one solution book) when his ship, ''Trader'', docked there. They were then brought with the ship to Philadelphia in February 1816. The first tangram book to be published in America was based on the pair brought by Donnaldson.
The puzzle eventually reached England, where it became very fashionable. The craze quickly spread to other European countries. This was mostly due to a pair of British tangram books, ''The Fashionable Chinese Puzzle'', and the accompanying solution book, ''Key''. Soon, tangram sets were being exported in great number from China, made of various materials, from glass, to wood, to tortoise shell.
Many of these unusual and exquisite tangram sets made their way to
Denmark
Denmark is a Nordic countries, Nordic country in Northern Europe. It is the metropole and most populous constituent of the Kingdom of Denmark,, . also known as the Danish Realm, a constitutionally unitary state that includes the Autonomous a ...
. Danish interest in tangrams skyrocketed around 1818, when two books on the puzzle were published, to much enthusiasm. The first of these was ''Mandarinen'' (About the Chinese Game). This was written by a student at
Copenhagen University, which was a non-fictional work about the history and popularity of tangrams. The second, ''Det nye chinesiske Gaadespil'' (The new Chinese Puzzle Game), consisted of 339 puzzles copied from ''The Eighth Book of Tan'', as well as one original.
One contributing factor in the popularity of the game in Europe was that although the
Catholic Church
The Catholic Church (), also known as the Roman Catholic Church, is the List of Christian denominations by number of members, largest Christian church, with 1.27 to 1.41 billion baptized Catholics Catholic Church by country, worldwid ...
forbade many forms of recreation on the sabbath, they made no objection to puzzle games such as the tangram.
Second craze in Germany (1891–1920s)
Tangrams were first introduced to the German public by industrialist
Friedrich Adolf Richter around 1891.
The sets were made out of stone or false
earthenware
Earthenware is glazed or unglazed Vitrification#Ceramics, nonvitreous pottery that has normally been fired below . Basic earthenware, often called terracotta, absorbs liquids such as water. However, earthenware can be made impervious to liquids ...
, and marketed under the name "The Anchor Puzzle".
More internationally, the First World War saw a great resurgence of interest in tangrams, on the homefront and trenches of both sides. During this time, it occasionally went under the name of "The
Sphinx
A sphinx ( ; , ; or sphinges ) is a mythical creature with the head of a human, the body of a lion, and the wings of an eagle.
In Culture of Greece, Greek tradition, the sphinx is a treacherous and merciless being with the head of a woman, th ...
" an alternative title for the "Anchor Puzzle" sets.
Paradoxes
A tangram
paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictor ...
is a dissection fallacy: Two figures composed with the same set of pieces, one of which seems to be a proper subset of the other.
[Tangram Paradox](_blank)
by Barile, Margherita, From MathWorld – A Wolfram Web Resource, created by Eric W. Weisstein. One famous paradox is that of the two
monk
A monk (; from , ''monachos'', "single, solitary" via Latin ) is a man who is a member of a religious order and lives in a monastery. A monk usually lives his life in prayer and contemplation. The concept is ancient and can be seen in many reli ...
s, attributed to
Henry Dudeney
Henry Ernest Dudeney (10 April 1857 – 23 April 1930) was an English author and mathematician who specialised in logic puzzles and mathematical games. He is known as one of the foremost creators of mathematical puzzles.
Early life
Dudene ...
, which consists of two similar shapes, one with and the other missing a foot.
In reality, the area of the foot is compensated for in the second figure by a subtly larger body.
The two-monks paradox – two similar shapes but one missing a foot:

The Magic Dice Cup tangram paradox – from
Sam Loyd's book ''The 8th Book of Tan'' (1903).
Each of these cups was composed using the same seven geometric shapes. But the first cup is whole, and the others contain vacancies of different sizes. (Notice that the one on the left is slightly shorter than the other two. The one in the middle is ever-so-slightly wider than the one on the right, and the one on the left is narrower still.)

Clipped square tangram paradox – from Loyd's book ''The Eighth Book of Tan'' (1903):
Number of configurations
Over 6500 different tangram problems have been created from 19th-century texts alone, and the current number is ever-growing. Fu Traing Wang and Chuan-Chih Hsiung proved in 1942 that there are only thirteen
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
tangram configurations (segments drawn between any two points on the configuration are always completely contained inside the configuration, i.e., configurations with no recesses in the outline).
Pieces
Choosing a unit of measurement so that the seven pieces can be assembled to form a square of side one unit and having area one square unit, the seven pieces are:
* 2 large
right triangles (hypotenuse 1, sides , area )
* 1 medium right triangle (hypotenuse , sides , area )
* 2 small right triangles (hypotenuse , sides , area )
* 1
square
In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
(sides , area )
* 1
parallelogram
In Euclidean geometry, a parallelogram is a simple polygon, simple (non-list of self-intersecting polygons, self-intersecting) quadrilateral with two pairs of Parallel (geometry), parallel sides. The opposite or facing sides of a parallelogram a ...
(sides of and , height of , area )
Of these seven pieces, the parallelogram is unique in that it has no
reflection symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a Reflection (mathematics), reflection. That is, a figure which does not change upon undergoing a reflection has reflecti ...
but only
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape (geometry), shape has when it looks the same after some rotation (mathematics), rotation by a partial turn (angle), turn. An object's degree of rotational s ...
, and so its
mirror image
A mirror image (in a plane mirror) is a reflection (physics), reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical phenomenon, optical effect, it r ...
can be obtained only by flipping it over. Thus, it is the only piece that may need to be flipped when forming certain shapes.
See also
*
''Tangram'' (video game)
*
Egg of Columbus (tangram puzzle)
*
Mathematical puzzle
Mathematical puzzles make up an integral part of recreational mathematics. They have specific rules, but they do not usually involve competition between two or more players. Instead, to solve such a puzzle, the solver must find a solution that sati ...
*
Ostomachion
*
Tiling puzzle
*
Attribute blocks
Attribute blocks, also called logic blocks, are mathematical manipulatives used to teach logic.
Each block
Block or blocked may refer to:
Arts, entertainment and media Broadcasting
* Block programming, the result of a programming strategy in ...
References
;Sources
*
*
Further reading
* Anno, Mitsumasa. ''Anno's Math Games'' (three volumes). New York: Philomel Books, 1987. (v. 1), (v. 2), (v. 3).
* Botermans, Jack, et al. ''The World of Games: Their Origins and History, How to Play Them, and How to Make Them'' (translation of ''Wereld vol spelletjes''). New York: Facts on File, 1989. .
* Dudeney, H. E. ''Amusements in Mathematics''. New York: Dover Publications, 1958.
*
Gardner, Martin. "Mathematical Games—on the Fanciful History and the Creative Challenges of the Puzzle Game of Tangrams", ''Scientific American'' Aug. 1974, p. 98–103.
* Gardner, Martin. "More on Tangrams", ''Scientific American'' Sep. 1974, p. 187–191.
* Gardner, Martin. ''The 2nd Scientific American Book of Mathematical Puzzles and Diversions''. New York: Simon & Schuster, 1961. .
* Loyd, Sam. ''Sam Loyd's Book of Tangram Puzzles (The 8th Book of Tan Part I)''. Mineola, New York: Dover Publications, 1968.
* Slocum, Jerry, et al. ''Puzzles of Old and New: How to Make and Solve Them''. De Meern, Netherlands: Plenary Publications International (Europe); Amsterdam, Netherlands: ADM International; Seattle: Distributed by University of Washington Press, 1986. .
External links
Past & Future: The Roots of Tangram and Its Developmentsby puzzle designer
G. Sarcone
{{Authority control
Tiling puzzles
Chinese games
Mathematical manipulatives
Single-player games
Geometric dissection
Chinese ancient games
Chinese inventions
Polyforms
19th-century fads and trends