In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the tangent space of a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
is a generalization of to curves in
two-dimensional space
A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensiona ...
and to surfaces in
three-dimensional space
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ('' coordinates'') are required to determine the position of a point. Most commonly, it is the three- ...
in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold.
Informal description
In
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, one can attach to every point
of a
differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
a ''tangent space''—a real
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
that intuitively contains the possible directions in which one can tangentially pass through
. The elements of the tangent space at
are called the ''
tangent vector
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are ...
s'' at
. This is a generalization of the notion of a
vector
Vector most often refers to:
* Euclidean vector, a quantity with a magnitude and a direction
* Disease vector, an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematics a ...
, based at a given initial point, in a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
of the tangent space at every point of a
connected manifold is the same as that of the
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
itself.
For example, if the given manifold is a
-
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, then one can picture the tangent space at a point as the plane that touches the sphere at that point and is
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
to the sphere's radius through the point. More generally, if a given manifold is thought of as an
embedded submanifold
In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
of
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, then one can picture a tangent space in this literal fashion. This was the traditional approach toward defining
parallel transport. Many authors in
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
use it. More strictly, this defines an affine tangent space, which is distinct from the space of tangent vectors described by modern terminology.
In
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, in contrast, there is an intrinsic definition of the ''tangent space at a point'' of an
algebraic variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
that gives a vector space with dimension at least that of
itself. The points
at which the dimension of the tangent space is exactly that of
are called ''non-singular'' points; the others are called ''singular'' points. For example, a curve that crosses itself does not have a unique tangent line at that point. The singular points of
are those where the "test to be a manifold" fails. See
Zariski tangent space.
Once the tangent spaces of a manifold have been introduced, one can define
vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s, which are abstractions of the velocity field of particles moving in space. A vector field attaches to every point of the manifold a vector from the tangent space at that point, in a smooth manner. Such a vector field serves to define a generalized
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematic ...
on a manifold: A solution to such a differential equation is a differentiable
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
on the manifold whose derivative at any point is equal to the tangent vector attached to that point by the vector field.
All the tangent spaces of a manifold may be "glued together" to form a new differentiable manifold with twice the dimension of the original manifold, called the ''
tangent bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
'' of the manifold.
Formal definitions
The informal description above relies on a manifold's ability to be embedded into an ambient vector space
so that the tangent vectors can "stick out" of the manifold into the ambient space. However, it is more convenient to define the notion of a tangent space based solely on the manifold itself.
There are various equivalent ways of defining the tangent spaces of a manifold. While the definition via the velocity of curves is intuitively the simplest, it is also the most cumbersome to work with. More elegant and abstract approaches are described below.
Definition via tangent curves
In the embedded-manifold picture, a tangent vector at a point
is thought of as the ''velocity'' of a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
passing through the point
. We can therefore define a tangent vector as an equivalence class of curves passing through
while being tangent to each other at
.
Suppose that
is a
differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
(with
smoothness
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain.
A function of class C^k is a function of smoothness at least ; t ...
) and that
. Pick a
coordinate chart , where
is an
open subset
In mathematics, an open set is a generalization of an open interval in the real line.
In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the met ...
of
containing
. Suppose further that two curves
with
are given such that both
are differentiable in the ordinary sense (we call these ''differentiable curves initialized at
''). Then
and
are said to be ''equivalent'' at
if and only if the derivatives of
and
at
coincide. This defines an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on the set of all differentiable curves initialized at
, and
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of such curves are known as ''tangent vectors'' of
at
. The equivalence class of any such curve
is denoted by
. The ''tangent space'' of
at
, denoted by
, is then defined as the set of all tangent vectors at
; it does not depend on the choice of coordinate chart
.
To define vector-space operations on
, we use a chart
and define a
map by
where
. The map
turns out to be
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
and may be used to transfer the vector-space operations on
over to
, thus turning the latter set into an
-dimensional real vector space. Again, one needs to check that this construction does not depend on the particular chart
and the curve
being used, and in fact it does not.
Definition via derivations
Suppose now that
is a
manifold. A real-valued function
is said to belong to
if and only if for every coordinate chart
, the map
is infinitely differentiable. Note that
is a real
associative algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
with respect to the
pointwise product and sum of functions and scalar multiplication.
A ''
derivation'' at
is defined as a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
that satisfies the Leibniz identity
which is modeled on the
product rule of calculus.
(For every identically constant function
it follows that
).
Denote
the set of all derivations at
Setting
*
and
*
turns
into a vector space.
Generalizations
Generalizations of this definition are possible, for instance, to
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
s and
algebraic varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. However, instead of examining derivations
from the full algebra of functions, one must instead work at the level of
germs of functions. The reason for this is that the
structure sheaf
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of ...
may not be
fine
Fine may refer to:
Characters
* Fran Fine, the title character of ''The Nanny''
* Sylvia Fine (''The Nanny''), Fran's mother on ''The Nanny''
* Officer Fine, a character in ''Tales from the Crypt'', played by Vincent Spano
Legal terms
* Fine (p ...
for such structures. For example, let
be an algebraic variety with
structure sheaf
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of ...
. Then the
Zariski tangent space at a point
is the collection of all
-derivations
, where
is the
ground field and
is the
stalk of
at
.
Equivalence of the definitions
For
and a differentiable curve
such that
define
(where the derivative is taken in the ordinary sense because
is a function from
to
). One can ascertain that
is a derivation at the point
and that equivalent curves yield the same derivation. Thus, for an equivalence class
we can define
where the curve
has been chosen arbitrarily. The map
is a vector space isomorphism between the space of the equivalence classes
and the space of derivations at the point
Definition via cotangent spaces
Again, we start with a
manifold
and a point
. Consider the
ideal of
that consists of all smooth functions
vanishing at
, i.e.,
. Then
and
are both real vector spaces, and the
quotient space can be shown to be
isomorphic to the
cotangent space through the use of
Taylor's theorem
In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a polynomial of degree k, called the k-th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation a ...
. The tangent space
may then be defined as the
dual space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by cons ...
of
.
While this definition is the most abstract, it is also the one that is most easily transferable to other settings, for instance, to the
varieties considered in
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
.
If
is a derivation at
, then
for every
, which means that
gives rise to a linear map
. Conversely, if
is a linear map, then
defines a derivation at
. This yields an equivalence between tangent spaces defined via derivations and tangent spaces defined via cotangent spaces.
Properties
If
is an open subset of
, then
is a
manifold in a natural manner (take coordinate charts to be
identity maps on open subsets of
), and the tangent spaces are all naturally identified with
.
Tangent vectors as directional derivatives
Another way to think about tangent vectors is as
directional derivative
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point.
The directional derivative of a multivariable differentiable (scalar) function along a given vect ...
s. Given a vector
in
, one defines the corresponding directional derivative at a point
by
:
This map is naturally a derivation at
. Furthermore, every derivation at a point in
is of this form. Hence, there is a one-to-one correspondence between vectors (thought of as tangent vectors at a point) and derivations at a point.
As tangent vectors to a general manifold at a point can be defined as derivations at that point, it is natural to think of them as directional derivatives. Specifically, if
is a tangent vector to
at a point
(thought of as a derivation), then define the directional derivative
in the direction
by
:
If we think of
as the initial velocity of a differentiable curve
initialized at
, i.e.,
, then instead, define
by
:
Basis of the tangent space at a point
For a
manifold
, if a chart
is given with
, then one can define an ordered basis
of
by
:
Then for every tangent vector
, one has
:
This formula therefore expresses
as a linear combination of the basis tangent vectors
defined by the coordinate chart
.
The derivative of a map
Every smooth (or differentiable) map
between smooth (or differentiable) manifolds induces natural
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
s between their corresponding tangent spaces:
:
If the tangent space is defined via differentiable curves, then this map is defined by
:
If, instead, the tangent space is defined via derivations, then this map is defined by
:
The linear map
is called variously the ''derivative'', ''total derivative'', ''differential'', or ''pushforward'' of
at
. It is frequently expressed using a variety of other notations:
:
In a sense, the derivative is the best linear approximation to
near
. Note that when
, then the map
coincides with the usual notion of the
differential of the function
. In
local coordinates the derivative of
is given by the
Jacobian.
An important result regarding the derivative map is the following:
This is a generalization of the
inverse function theorem to maps between manifolds.
See also
*
Coordinate-induced basis
*
Cotangent space
*
Differential geometry of curves
Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus.
Many specific curves have been thoroughly investigated using the ...
*
Exponential map
*
Vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
Notes
References
* .
* .
* .
External links
Tangent Planesat MathWorld
{{DEFAULTSORT:Tangent Space
Differential topology
Differential geometry