HOME

TheInfoList



OR:

This is a table of orthonormalized
spherical harmonics In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a ...
that employ the Condon-Shortley phase up to degree \ell = 10. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in ''x'', ''y'', ''z'', and ''r''. For purposes of this table, it is useful to express the usual spherical to Cartesian transformations that relate these Cartesian components to \theta and \varphi as \begin \cos(\theta) & = z/r\\ e^ \cdot \sin(\theta) & = (x \pm iy)/r \end


Complex spherical harmonics

For ''ℓ'' = 0, …, 5, see.


''ℓ'' = 0

Y_^(\theta,\varphi)=\sqrt


''ℓ'' = 1

\begin Y_^(\theta,\varphi) &= & & \sqrt\cdot e^\cdot\sin\theta & &= & &\sqrt \cdot \\ Y_^(\theta,\varphi) &= & & \sqrt\cdot \cos\theta & &= & &\sqrt \cdot \\ Y_^(\theta,\varphi) &= &-& \sqrt\cdot e^\cdot \sin\theta & &= &-&\sqrt \cdot \end


''ℓ'' = 2

\begin Y_^(\theta,\varphi)&=& &\sqrt\cdot e^\cdot\sin^\theta\quad &&=& &\sqrt\cdot&\\ Y_^(\theta,\varphi)&=& &\sqrt\cdot e^\cdot\sin \theta\cdot \cos\theta\quad &&=& &\sqrt\cdot&\\ Y_^(\theta,\varphi)&=& &\sqrt\cdot (3\cos^\theta-1)\quad&&=& &\sqrt\cdot&\\ Y_^(\theta,\varphi)&=&-&\sqrt\cdot e^\cdot\sin \theta\cdot \cos\theta\quad &&=&-&\sqrt\cdot&\\ Y_^(\theta,\varphi)&=& &\sqrt\cdot e^\cdot\sin^\theta\quad &&=& &\sqrt\cdot& \end


''ℓ'' = 3

\begin Y_^(\theta,\varphi) &=& &\sqrt\cdot e^\cdot\sin^\theta\quad& &=& & \sqrt\cdot&\\ Y_^(\theta,\varphi) &=& &\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\quad& &=& & \sqrt\cdot&\\ Y_^(\theta,\varphi) &=& &\sqrt\cdot e^\cdot\sin\theta\cdot(5\cos^\theta-1)\quad& &=& &\sqrt\cdot&\\ Y_^(\theta,\varphi) &=& &\sqrt\cdot(5\cos^\theta-3\cos\theta)\quad& &=& &\sqrt\cdot&\\ Y_^(\theta,\varphi) &=&-&\sqrt\cdot e^ \cdot\sin\theta\cdot(5\cos^\theta-1)\quad& &=& &\sqrt\cdot&\\ Y_^(\theta,\varphi) &=& &\sqrt\cdot e^ \cdot\sin^\theta\cdot\cos\theta\quad& &=& &\sqrt\cdot&\\ Y_^(\theta,\varphi) &=&-&\sqrt\cdot e^ \cdot\sin^\theta\quad& &=& &\sqrt\cdot& \end


''ℓ'' = 4

\begin Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(7\cos^\theta-1)= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin\theta\cdot(7\cos^\theta-3\cos\theta)= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot(35\cos^\theta-30\cos^\theta+3)= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin\theta\cdot(7\cos^\theta-3\cos\theta)= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(7\cos^\theta-1)= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta= \frac \sqrt \cdot \frac\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta= \frac \sqrt \cdot \frac \end


''ℓ'' = 5

\begin Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(9\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(3\cos^\theta-\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin \theta\cdot(21\cos^\theta-14\cos^\theta+1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot (63\cos^\theta-70\cos^\theta+15\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin \theta\cdot(21\cos^\theta-14\cos^\theta+1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(3\cos^\theta-\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(9\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta \end


''ℓ'' = 6

\begin Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(11\cos^\theta-1)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(11\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(33\cos^\theta-18\cos^\theta+1)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin \theta\cdot(33\cos^\theta-30\cos^\theta+5\cos\theta)\\ Y_^(\theta,\varphi)&= \sqrt\cdot (231\cos^\theta-315\cos^\theta+105\cos^\theta-5)\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin \theta\cdot(33\cos^\theta-30\cos^\theta+5\cos\theta)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(33\cos^\theta-18\cos^\theta+1)\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin^\theta\cdot(11\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(11\cos^\theta-1)\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta \end


''ℓ'' = 7

\begin Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(13\cos^\theta-1)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(13\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(143\cos^\theta-66\cos^\theta+3)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(143\cos^\theta-110\cos^\theta+15\cos\theta)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin \theta\cdot(429\cos^\theta-495\cos^\theta+135\cos^\theta-5)\\ Y_^(\theta,\varphi)&= \sqrt\cdot (429\cos^\theta-693\cos^\theta+315\cos^\theta-35\cos\theta)\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin \theta\cdot(429\cos^\theta-495\cos^\theta+135\cos^\theta-5)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(143\cos^\theta-110\cos^\theta+15\cos\theta)\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin^\theta\cdot(143\cos^\theta-66\cos^\theta+3)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot(13\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin^\theta\cdot(13\cos^\theta-1)\\ Y_^(\theta,\varphi)&= \sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=-\sqrt\cdot e^\cdot\sin^\theta \end


''ℓ'' = 8

\begin Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(15\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(5\cos^\theta-\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(65\cos^\theta-26\cos^\theta+1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(39\cos^\theta-26\cos^\theta+3\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(143\cos^\theta-143\cos^\theta+33\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin\theta\cdot(715\cos^\theta-1001\cos^\theta+385\cos^\theta-35\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot(6435\cos^\theta-12012\cos^\theta+6930\cos^\theta-1260\cos^\theta+35)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin\theta\cdot(715\cos^\theta-1001\cos^\theta+385\cos^\theta-35\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(143\cos^\theta-143\cos^\theta+33\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(39\cos^\theta-26\cos^\theta+3\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(65\cos^\theta-26\cos^\theta+1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(5\cos^\theta-\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(15\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta \end


''ℓ'' = 9

\begin Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(17\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(17\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(85\cos^\theta-30\cos^\theta+1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(17\cos^\theta-10\cos^\theta+\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(221\cos^\theta-195\cos^\theta+39\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(221\cos^\theta-273\cos^\theta+91\cos^\theta-7\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin \theta\cdot(2431\cos^\theta-4004\cos^\theta+2002\cos^\theta-308\cos^\theta+7)\\ Y_^(\theta,\varphi)&=\sqrt\cdot (12155\cos^\theta-25740\cos^\theta+18018\cos^\theta-4620\cos^\theta+315\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin \theta\cdot(2431\cos^\theta-4004\cos^\theta+2002\cos^\theta-308\cos^\theta+7)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(221\cos^\theta-273\cos^\theta+91\cos^\theta-7\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(221\cos^\theta-195\cos^\theta+39\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(17\cos^\theta-10\cos^\theta+\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(85\cos^\theta-30\cos^\theta+1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(17\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(17\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta \end


''ℓ'' = 10

\begin Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(19\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(19\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-102\cos^\theta+3)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-170\cos^\theta+15\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-255\cos^\theta+45\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-357\cos^\theta+105\cos^\theta-7\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(4199\cos^\theta-6188\cos^\theta+2730\cos^\theta-364\cos^\theta+7)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin\theta\cdot(4199\cos^\theta-7956\cos^\theta+4914\cos^\theta-1092\cos^\theta+63\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot(46189\cos^\theta-109395\cos^\theta+90090\cos^\theta-30030\cos^\theta+3465\cos^\theta-63)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin\theta\cdot(4199\cos^\theta-7956\cos^\theta+4914\cos^\theta-1092\cos^\theta+63\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(4199\cos^\theta-6188\cos^\theta+2730\cos^\theta-364\cos^\theta+7)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-357\cos^\theta+105\cos^\theta-7\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-255\cos^\theta+45\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-170\cos^\theta+15\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(323\cos^\theta-102\cos^\theta+3)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(19\cos^\theta-3\cos\theta)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot(19\cos^\theta-1)\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta\cdot\cos\theta\\ Y_^(\theta,\varphi)&=\sqrt\cdot e^\cdot\sin^\theta \end


Visualization of complex spherical harmonics


2D polar/azimuthal angle maps

Below the complex spherical harmonics are represented on 2D plots with the azimuthal angle, \phi, on the horizontal axis and the polar angle, \theta, on the vertical axis. The saturation of the color at any point represents the magnitude of the spherical harmonic and the hue represents the phase.


Polar plots

Below the complex spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the saturation of the color at that point and the phase is represented by the hue at that point.


Polar plots with magnitude as radius

Below the complex spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the radius of the plot at that point and the phase is represented by the hue at that point.


Real spherical harmonics

For each real spherical harmonic, the corresponding atomic orbital symbol (''s'', ''p'', ''d'', ''f'') is reported as well. For ''ℓ'' = 0, …, 3, see.


''ℓ'' = 0

Y_ = s = Y_0^0 = \frac \sqrt


''ℓ'' = 1

\begin Y_ & = p_y = i \sqrt \left( Y_1^ + Y_1^1 \right) = \sqrt \cdot \frac \\ Y_ & = p_z = Y_1^0 = \sqrt \cdot \frac \\ Y_ & = p_x = \sqrt \left( Y_1^ - Y_1^1 \right) = \sqrt \cdot \frac \end


''ℓ'' = 2

\begin Y_ & = d_ = i \sqrt \left( Y_2^ - Y_2^2\right) = \frac \sqrt \cdot \frac \\ Y_ & = d_ = i \sqrt \left( Y_2^ + Y_2^1 \right) = \frac \sqrt \cdot \frac \\ Y_ & = d_ = Y_2^0 = \frac \sqrt \cdot \frac \\ Y_ & = d_ = \sqrt \left( Y_2^ - Y_2^1 \right) = \frac \sqrt \cdot \frac \\ Y_ & = d_ = \sqrt \left( Y_2^ + Y_2^2 \right) = \frac \sqrt \cdot \frac \end


''ℓ'' = 3

\begin Y_ & = f_ = i \sqrt \left( Y_3^ + Y_3^3 \right) = \frac \sqrt \cdot \frac \\ Y_ & = f_ = i \sqrt \left( Y_3^ - Y_3^2 \right) = \frac \sqrt \cdot \frac \\ Y_ & = f_ = i \sqrt \left( Y_3^ + Y_3^1 \right) = \frac \sqrt \cdot \frac \\ Y_ & = f_ = Y_3^0 = \frac \sqrt \cdot \frac \\ Y_ & = f_ = \sqrt \left( Y_3^ - Y_3^1 \right) = \frac \sqrt \cdot \frac \\ Y_ & = f_ = \sqrt \left( Y_3^ + Y_3^2 \right) = \frac \sqrt \cdot \frac \\ Y_ & = f_ = \sqrt \left( Y_3^ - Y_3^3 \right) = \frac \sqrt \cdot \frac \end


''ℓ'' = 4

\begin Y_ & = i \sqrt \left( Y_4^ - Y_4^4 \right) = \frac \sqrt \cdot \frac \\ Y_ & = i \sqrt \left( Y_4^ + Y_4^3 \right) = \frac \sqrt \cdot \frac \\ Y_ & = i \sqrt \left( Y_4^ - Y_4^2 \right) = \frac \sqrt \cdot \frac \\ Y_ & = i \sqrt \left( Y_4^ + Y_4^1\right) = \frac \sqrt \cdot \frac \\ Y_ & = Y_4^0 = \frac \sqrt \cdot \frac \\ Y_ & = \sqrt \left( Y_4^ - Y_4^1 \right) = \frac \sqrt \cdot \frac \\ Y_ & = \sqrt \left( Y_4^ + Y_4^2 \right) = \frac \sqrt \cdot \frac \\ Y_ & = \sqrt \left( Y_4^ - Y_4^3 \right) = \frac \sqrt \cdot \frac \\ Y_ & = \sqrt \left( Y_4^ + Y_4^4 \right) = \frac \sqrt \cdot \frac \end


Visualization of real spherical harmonics


2D polar/azimuthal angle maps

Below the real spherical harmonics are represented on 2D plots with the azimuthal angle, \phi, on the horizontal axis and the polar angle, \theta, on the vertical axis. The saturation of the color at any point represents the magnitude of the spherical harmonic and the hue represents the phase.


Polar plots

Below the real spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the saturation of the color at that point and the phase is represented by the hue at that point.


Polar plots with magnitude as radius

Below the real spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the radius of the plot at that point and the phase is represented by the hue at that point.


Polar plots with amplitude as elevation

Below the real spherical harmonics are represented on polar plots. The amplitude of the spherical harmonic (magnitude and sign) at a particular polar and azimuthal angle is represented by the elevation of the plot at that point above or below the surface of a uniform sphere. The magnitude is also represented by the saturation of the color at a given point. The phase is represented by the hue at a given point.


See also

*
Spherical harmonics In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a ...


External links


Spherical Harmonics
at
MathWorld ''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science ...

Spherical Harmonics 3D representation


References


Cited references


General references

* See section 3 in (see section 3.3) *For complex spherical harmonics, see als
SphericalHarmonicY[l,m,theta,phi
/nowiki> at Wolfram Alpha">,m,theta,phi">SphericalHarmonicY[l,m,theta,phi
/nowiki> at Wolfram Alpha especially for specific values of l and m. {{DEFAULTSORT:Table Of Spherical Harmonics Special hypergeometric functions