Table Of Congruences
   HOME

TheInfoList



OR:

In
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, a congruence is an equivalence relation on the integers. The following sections list important or interesting prime-related congruences.


Table of congruences characterizing special primes


Other prime-related congruences

There are other prime-related congruences that provide necessary and sufficient conditions on the primality of certain subsequences of the natural numbers. Many of these alternate statements characterizing primality are related to Wilson's theorem, or are restatements of this classical result given in terms of other special variants of generalized factorial functions. For instance, new variants of Wilson's theorem stated in terms of the hyperfactorials, subfactorials, and superfactorials are given in.


Variants of Wilson's theorem

For integers k \geq 1, we have the following form of Wilson's theorem: :(k-1)! (p-k)! \equiv (-1)^k \pmod \iff p \text If p is odd, we have that :\left(\frac\right)!^2 \equiv (-1)^ \pmod \iff p \text


Clement's theorem concerning the twin primes

Clement's congruence-based theorem characterizes the twin primes pairs of the form (p, p+2) through the following conditions: : 4 p-1)!+1\equiv -p \pmod \iff p,p+2 \text P. A. Clement's original 1949 paper provides a proof of this interesting elementary number theoretic criteria for twin primality based on Wilson's theorem. Another characterization given in Lin and Zhipeng's article provides that : 2 \left(\frac\right)!^2 + (-1)^ (5p+2) \equiv 0 \iff p,p+2 \text


Characterizations of prime tuples and clusters

The prime pairs of the form (p, p+2k) for some k \geq 1 include the special cases of the cousin primes (when k=2) and the sexy primes (when k=3). We have elementary congruence-based characterizations of the primality of such pairs, proved for instance in the article. Examples of congruences characterizing these prime pairs include :2k (2k)! p-1)!+1\equiv -(2k)! \pmod \iff p,p+2k \text and the alternate characterization when p is odd such that p \not (2k-1)!!^2 given by :2k(2k-1)!!^2 \left(\frac\right)!^2 + (-1)^\left 2k-1)!!^2(p+2k)-(-4)^k \cdot p\right\equiv 0 \iff p,p+2k \text Still other congruence-based characterizations of the primality of triples, and more general prime clusters (or prime tuples) exist and are typically proved starting from Wilson's theorem.See, for example, Section 3.3 in ).


References

{{Reflist Congruences Modular arithmetic