HOME

TheInfoList



OR:

Toxic shock syndrome toxin-1 (TSST-1) is a
superantigen (SAgs) are a class of antigens that result in excessive activation of the immune system. Specifically they cause non-specific activation of T-cells resulting in polyclonal T cell activation and massive cytokine release. Superantigens act by ...
with a size of 22 kDa produced by 5 to 25% of ''
Staphylococcus aureus ''Staphylococcus aureus'' is a Gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often posi ...
'' isolates. It causes
toxic shock syndrome Toxic shock syndrome (TSS) is a condition caused by Exotoxin, bacterial toxins. Symptoms may include fever, rash, skin peeling, and low blood pressure. There may also be symptoms related to the specific underlying infection such as mastitis, ...
(TSS) by stimulating the release of large amounts of
interleukin-1 The Interleukin-1 family (IL-1 family) is a group of 11 cytokines that plays a central role in the regulation of immune and inflammatory responses to infections or sterile insults. Discovery Discovery of these cytokines began with studies on t ...
,
interleukin-2 Interleukin-2 (IL-2) is an interleukin, which is a type of cytokine signaling molecule forming part of the immune system. It is a 15.5–16  kDa protein that regulates the activities of white blood cells (leukocytes, often lymphocytes) ...
and
tumor necrosis factor Tumor necrosis factor (TNF), formerly known as TNF-α, is a chemical messenger produced by the immune system that induces inflammation. TNF is produced primarily by activated macrophages, and induces inflammation by binding to its receptors o ...
. In general, the toxin is not produced by bacteria growing in the blood; rather, it is produced at the local site of an infection, and then enters the blood stream.


Characteristics

Toxic shock syndrome toxin-1 (TSST-1), a prototype
superantigen (SAgs) are a class of antigens that result in excessive activation of the immune system. Specifically they cause non-specific activation of T-cells resulting in polyclonal T cell activation and massive cytokine release. Superantigens act by ...
secreted by a ''
Staphylococcus aureus ''Staphylococcus aureus'' is a Gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often posi ...
'' bacterium strain in susceptible hosts, acts on the vascular system by causing
inflammation Inflammation (from ) is part of the biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. The five cardinal signs are heat, pain, redness, swelling, and loss of function (Latin ''calor'', '' ...
,
fever Fever or pyrexia in humans is a symptom of an anti-infection defense mechanism that appears with Human body temperature, body temperature exceeding the normal range caused by an increase in the body's temperature Human body temperature#Fever, s ...
, and
shock Shock may refer to: Common uses Healthcare * Acute stress reaction, also known as psychological or mental shock ** Shell shock, soldiers' reaction to battle trauma * Circulatory shock, a medical emergency ** Cardiogenic shock, resulting from ...
. The bacterium strain that produces the TSST-1 can be found in any area of the body, but lives mostly in the vagina of infected women. TSST-1 is a bacterial
exotoxin An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, sim ...
found in patients who have developed toxic shock syndrome (TSS), which can be found in menstruating women or any man or child for that matter. One-third of all TSS cases have been found in men. This statistic could possibly be due to surgical wounds or any skin wound. TSST-1 is the cause of half of non-menstrual TSS cases, and the sole cause for menstrual TSS cases.


Structure

In the nucleotide sequence of TSST-1, there is a 708 base-pair open-reading frame and a Shine-Dalgarno sequence which is seven base pairs downstream from the start site. In the entire nucleotide sequence, only 40 amino acids make up the signal peptide. A single signal peptide consists of a 1 to 3 basic amino acid terminus, a hydrophobic region of 15 residues, a proline (Pro) or glycine (Gly) in the hydrophobic core region, a serine (Ser) or threonine (Thr) amino acid near the carboxyl terminal end of the hydrophobic core, and an alanine (Ala) or glycine (Gly) at the cleavage site. A mature TSST-1 protein has a coding sequence of 585 base pairs. The entire nucleotide sequence was determined by Blomster-Hautamaazg, et al., as well as by other researchers with other experiments. Consisting of a single polypeptide chain, the structure of holotoxin TSST-1 is three-dimensional and consists of an alpha (α) and beta (β) domain. This three-dimensional structure of the TSST-1 protein was determined by purifying the crystals of the protein. The two domains are adjacent from each other and possess unique qualities. Domain A, the larger of the two domains, contains residues 1-17 and 90–194 in TSST-1 and consists of a long alpha (α) helix with residues 125-140 surrounded by a 5-strand beta (β) sheet. Domain B is unique because it contains residues 18–89 in TSST-1 and consists of a (β) barrel made up of 5 β-strands.
Crystallography Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
methods show that the internal β-barrel of domain B contains several hydrophobic amino acids and hydrophilic residues on the surface of the domain, which allows TSST-1 to cross mucous surfaces of epithelial cells. Even though TSST-1 consists of several hydrophobic amino acids, this protein is highly soluble in water. TSST-1 is resistant to heat and proteolysis. It has been shown that TSST-1 can be boiled for more than an hour without any presence of denaturation or direct effect on its function.


Production

TSST-1 is a protein encoded by the ''tst'' gene, which is part of the
mobile genetic element Mobile genetic elements (MGEs), sometimes called selfish genetic elements, are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In ...
staphylococcal pathogenicity island 1. The toxin is produced in the greatest volumes during the post-exponential phase of growth, which is similar among pyrogenic toxin superantigens, also known as PTSAgs.
Oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
is required in order to produce TSST-1, in addition to the presence of animal protein, low levels of glucose, and temperatures between . Production is optimal at pH's close to neutral and when
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
levels are low, and is further amplified by high concentrations of ''S. aureus'', which indicates its importance in establishing infection. TSST-1 differs from other PTSAgs in that its genetic sequence does not have a homolog with other superantigen sequences. TSST-1 does not have a
cysteine Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
loop, which is an important structure in other PTSAgs. TSST-1 is also different from other PTSAgs in its ability to cross
mucous membrane A mucous membrane or mucosa is a membrane that lines various cavities in the body of an organism and covers the surface of internal organs. It consists of one or more layers of epithelial cells overlying a layer of loose connective tissue. It ...
s, which is why it is an important factor in menstrual TSS. When the protein is translated, it is in a pro-protein form, and can only leave the cell once the signal sequence has been cleaved off. The ''agr'' (
accessory gene regulator Accessory gene regulator (agr) is a complex 4 gene locus that is a global regulator of virulence in ''Staphylococcus aureus''. It encodes a two-component transcriptional quorum-sensing (QS) system activated by an autoinducing, thiolactone-contain ...
) locus is one of the key sites of positive regulation for many of the ''S. aureus'' genes, including TSST-1. Additionally, alterations in the expression of the genes ''ssrB'' and ''srrAB'' affect the
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, often th ...
of TSST-1. Further, high levels of glucose inhibit transcription, since glucose acts as a catabolite repressor.


Mutations

Based on studies of various mutations of the protein it appears that the superantigenic and lethal portions of the protein are separate. One variant in particular, TSST-ovine or TSST-O, was important in determining the regions of biological importance in TSST-1. TSST-O does not cause TSS, and is non-
mitogenic A mitogen is a small bioactive protein or peptide that induces a cell to begin cell division, or enhances the rate of division (mitosis). Mitogenesis is the induction (triggering) of mitosis, typically via a mitogen. The cell cycle Mitogens ac ...
, and differs in sequence from TSST-1 in 14
nucleotides Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
, which corresponds to 9 amino acids. Two of these are cleaved off as part of the signal sequence, and are therefore not important in the difference in function observed. From the studies observing the differences in these two proteins, it was discovered that residue 135 is critical in both lethality and mitogenicity, while mutations in residues 132 and 136 caused the protein to lose its ability to cause TSS, however there were still signs of superantigenicity. If the
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
at residue 132 in TSST-O is changed to a
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
, the mutant regains little superantigenicity, but becomes lethal, meaning that the ability to cause TSS results from the glutamate at residue 132. The loss of activity from these mutations is not due to changes in the protein's conformation, but instead these residues appear to be critical in the interactions with
T-cell receptors The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
.


Isolation

Samples of TSST-1 can be purified from bacterial cultures to use in ''in vitro'' testing environments, however this is not ideal due to the large number of factors that contribute to pathenogenesis in an ''in vivo'' environment. Additionally, culturing bacteria ''in vitro'' provides an environment which is rich in nutrients, in contrast to the reality of an ''in vivo'' environment, in which nutrients tend to be more scarce. TSST-1 can be purified by preparative
isoelectric focusing Isoelectric focusing (IEF), also known as electrofocusing, is a technique for separating different charged molecules by differences in their isoelectric point (pI). It is a type of zone electrophoresis usually performed on proteins in a gel tha ...
for use ''in vitro'' or for animal models using a mini-osmotic pump.


Mechanism

A superantigen such as TSST-1 stimulates human T cells that express VB 2, which may represent 5-30% of all host T cells. PTSAgs induce the VB-specific expansion of both CD4 and CD8- subsets of T-lymphocytes. TSST-1 forms homodimers in most of its known crystal forms. The SAGs show remarkably conserved architecture and are divided into the N- and C- terminal domains. Mutational analysis has mapped the putative TCR binding region of TSST-1 to a site located on the back-side groove. If the TCR occupies this site, the amino terminal alpha helix forms a large wedge between the TCR and MHC class II molecules. The wedge would physically separate the TCR from the MHC class II molecules. A novel domain may exist in the SAGs that is separate from the TCR and class II MHC-binding domains. The domain consists of residues 150 to 161 in SEB, and similar regions exist in all the other SAGs as well. In this study a synthetic peptide containing this sequence was able to prevent SAG-induced lethality in D-galactosamine-sensitized mice with staphylococcal TSST-1, as well as some other SAGs. Significant differences exist in the sequences of MHC Class II alleles and TCR Vbeta elements expressed by different species, and these differences have important effects on the interaction of PTSAgs and with MCH class II and TCR molecules.


Binding site

TSST-1 binds primarily to the alpha-chain of class II MHC exclusively through a low-affinity (or generic) binding site on the SAG N-terminal domain. This is opposed to other super antigens (SAGs) such as DEA and SEE, that bind to class II MHC through the low-affinity site, and to the beta-chain through a high-affinity site. This high-affinity site is a zinc-dependent site on the SAG C-terminal domain. When this site is bound, it extends over part of the binding groove, makes contacts with the bound peptide, and then binds regions of both the alpha and beta chains. MHC-binding by TSST-1 is partially peptide-dependent. Mutagenesis studies with SEA have indicated that both binding sites are required for optimal T-cell activation. These studies containing TSST-1 indicate that the TCR binding domain lies at the top of the back side of this toxin, though the complete interaction remains to be determined. There have also been indications that the TCR binding site of TSST-1 is mapped to the major groove of the central alpha helix or the short amino terminal alpha helix. Residues in the beta claw motif of TSST-1 are known to interact primarily with the invariant region of the Alpha chain of this MHC class II molecule. Residues forming minor contacts with TSST-1 were also identified in the HLA-DR1 β-chain, as well as the antigenic peptide, located in the interchain groove. The arrangement of TSST-1 with respect to the MHC class II molecule imposes steric restriction on the three component complex composed of TSST-1, MHC class II, and the TCR.


Mutational analysis

Initial studies of mutants revealed that residues on the back side of the central alpha helix were required for super antigenic activity. Changing the histidine at position 135 to alanine caused TSST-1 to be neither lethal or superantigenic. Changes in residues that were in close proximity to H135A, also had the effect of diminishing the lethality and superantigenic quality of these mutants. Although most of these mutants did not result in loss of antigenicity of TSST-1. Tests done using mutagenic TSST-1 toxins indicated that the lethal and superantigenic properties are separable. When Lys-132 in TSST-O was changed to a Glu, the resulting mutant became completely lethal but non superantigenic. The same results, lethal but not superantigenic, were found for TSST-1 Gly16Val. Residues Gly16, Glu132, and Gln 136, located on the back of the back-side groove of the putative TCR binding region of TSST-1, it has been proposed that they are also a part of a second functionally lethal site in the TSST-1.


Notes


References

{{Toxins Bacterial toxins Superantigens Proteins