T4 DNA Ligase
   HOME

TheInfoList



OR:

DNA ligase is a type of enzyme that facilitates the joining of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
strands together by catalyzing the formation of a
phosphodiester bond In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
. It plays a role in repairing single-strand breaks in duplex
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both
complementary Complement may refer to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class collections into complementary sets * Complementary color, in the visu ...
strands of DNA). Single-strand breaks are repaired by DNA ligase using the complementary strand of the double helix as a template, with DNA ligase creating the final phosphodiester bond to fully repair the DNA. DNA ligase is used in both
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
and
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
(see '' Mammalian ligases''). In addition, DNA ligase has extensive use in
molecular biology Molecular biology is a branch of biology that seeks to understand the molecule, molecular basis of biological activity in and between Cell (biology), cells, including biomolecule, biomolecular synthesis, modification, mechanisms, and interactio ...
laboratories for
recombinant DNA Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be fo ...
experiments (see '' Research applications''). Purified DNA ligase is used in gene cloning to join DNA molecules together to form
recombinant DNA Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be fo ...
.


Enzymatic mechanism

The mechanism of DNA ligase is to form two
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
phosphodiester bonds In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
between 3' hydroxyl ends of one
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
("acceptor"), with the 5' phosphate end of another ("donor"). Two ATP molecules are consumed for each phosphodiester bond formed. AMP is required for the ligase reaction, which proceeds in four steps: # Reorganization of activity site such as nicks in DNA segments or Okazaki fragments etc. # Adenylylation (addition of AMP) of a
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
residue in the active center of the enzyme,
pyrophosphate In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate () and tetrasodium pyrophosphate (), among others. Often pyrophosphates a ...
is released; # Transfer of the AMP to the 5' phosphate of the so-called donor, formation of a pyrophosphate bond; # Formation of a phosphodiester bond between the 5' phosphate of the donor and the 3' hydroxyl of the acceptor. Ligase will also work with blunt ends, although higher enzyme concentrations and different reaction conditions are required.


Types


''E. coli''

The ''
E. coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escherichia'' that is commonly foun ...
'' DNA ligase is encoded by the ''lig'' gene. DNA ligase in ''
E. coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escherichia'' that is commonly foun ...
'', as well as most prokaryotes, uses energy gained by cleaving
nicotinamide adenine dinucleotide Nicotinamide adenine dinucleotide (NAD) is a Cofactor (biochemistry), coenzyme central to metabolism. Found in all living cell (biology), cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphat ...
(NAD) to create the phosphodiester bond. It does not ligate blunt-ended DNA except under conditions of molecular crowding with
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular wei ...
, and cannot join RNA to DNA efficiently. The activity of E. coli DNA ligase can be enhanced by
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
at the right concentrations. Enhancement only works when the concentrations of the DNA polymerase 1 are much lower than the DNA fragments to be ligated. When the concentrations of Pol I DNA polymerases are higher, it has an adverse effect on E. coli DNA ligase


T4

The DNA ligase from
bacteriophage T4 Escherichia virus T4 is a species of bacteriophages that infect ''Escherichia coli'' bacteria. It is a double-stranded DNA virus in the subfamily '' Tevenvirinae'' of the family '' Straboviridae''. T4 is capable of undergoing only a lytic li ...
(a
bacteriophage A bacteriophage (), also known informally as a phage (), is a virus that infects and replicates within bacteria. The term is derived . Bacteriophages are composed of proteins that Capsid, encapsulate a DNA or RNA genome, and may have structu ...
that infects ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'' bacteria). The T4 ligase is the most-commonly used in laboratory research. It can ligate either cohesive or blunt ends of DNA, oligonucleotides, as well as RNA and RNA-DNA hybrids, but not single-stranded nucleic acids. It can also ligate blunt-ended DNA with much greater efficiency than ''
E. coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escherichia'' that is commonly foun ...
'' DNA ligase. Unlike ''E. coli'' DNA ligase, T4 DNA ligase cannot utilize NAD and it has an absolute requirement for ATP as a cofactor. Some engineering has been done to improve the ''in vitro'' activity of T4 DNA ligase; one successful approach, for example, tested T4 DNA ligase fused to several alternative DNA binding proteins and found that the constructs with either p50 or NF-kB as fusion partners were over 160% more active in blunt-end ligations for cloning purposes than wild type T4 DNA ligase. A typical reaction for inserting a fragment into a plasmid vector would use about 0.01 (sticky ends) to 1 (blunt ends) units of ligase. The optimal incubation temperature for T4 DNA ligase is 37 °C, a temperature at which T4 enzymes are most active. However, it is not uncommon to setup ligation reactions at 16 °C, a trade-off temperature at which the ligase is active as well as one that is suitable for base-pairing of sticky ends.
Bacteriophage T4 Escherichia virus T4 is a species of bacteriophages that infect ''Escherichia coli'' bacteria. It is a double-stranded DNA virus in the subfamily '' Tevenvirinae'' of the family '' Straboviridae''. T4 is capable of undergoing only a lytic li ...
ligase
mutant In biology, and especially in genetics, a mutant is an organism or a new genetic character arising or resulting from an instance of mutation, which is generally an alteration of the DNA sequence of the genome or chromosome of an organism. It i ...
s have increased sensitivity to both UV irradiation and the alkylating agent
methyl methanesulfonate In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula (whereas normal methane has the formula ). In formulas, the group is often abbreviated ...
indicating that DNA ligase is employed in the
repair The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure and supporting utilities in industrial, business, and residential installat ...
of the DNA damages caused by these agents.


Mammalian

In mammals, there are four specific types of ligase. # DNA ligase 1: ligates the nascent DNA of the
lagging strand In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms, acting as the most essential part of biological inheritance ...
after the
Ribonuclease H Ribonuclease H (abbreviated RNase H or RNH) is a family of non-sequence-specific endonuclease enzymes that catalyze the cleavage of RNA in an RNA/DNA substrate via a hydrolytic mechanism. Members of the RNase H family can be found in nearly al ...
has removed the RNA primer from the
Okazaki fragment Okazaki fragments are short sequences of DNA nucleotides (approximately 150 to 200 base pairs long in eukaryotes) which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA ...
s. # DNA ligase 3: complexes with
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
XRCC1 DNA repair protein XRCC1, also known as X-ray repair cross-complementing protein 1, is a protein that in humans is encoded by the ''XRCC1'' gene. XRCC1 is involved in DNA repair, where it complexes with DNA ligase III. Function XRCC1 is invo ...
to aid in sealing DNA during the process of
nucleotide excision repair Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. Intercalation (biochemistry), intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single ...
and recombinant fragments. Of the all known mammalian DNA ligases, only ligase 3 has been found to be present in mitochondria. #
DNA ligase 4 DNA ligase 4 also DNA ligase IV, is an enzyme that in humans is encoded by the ''LIG4'' gene. Function DNA ligase 4 is an ATP-dependent DNA ligase that joins double-strand breaks during the non-homologous end joining pathway of double-strand ...
: complexes with
XRCC4 DNA repair protein XRCC4 (hXRCC4) also known as X-ray repair cross-complementing protein 4 is a protein that in humans is encoded by the ''XRCC4'' gene. ''XRCC4'' is also expressed in many other animals, fungi and plants. hXRCC4 is one of severa ...
. It catalyzes the final step in the
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
DNA double-strand break repair pathway. It is also required for
V(D)J recombination V(D)J recombination (variable–diversity–joining rearrangement) is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire ...
, the process that generates diversity in
immunoglobulin An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as pathogenic bacteria, bacteria and viruses, includin ...
and
T-cell receptor The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
loci during
immune system The immune system is a network of biological systems that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to bacteria, as well as Tumor immunology, cancer cells, Parasitic worm, parasitic ...
development. * DNA ligase 2: A purification artifact resulting from proteolytic degradation of DNA ligase 3. Initially, it has been recognized as another DNA ligase and it is the reason for the unusual nomenclature of DNA ligases. DNA ligase from
eukaryotes The eukaryotes ( ) constitute the domain of Eukaryota or Eukarya, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, seaweeds, and many unicellular organisms are eukaryotes. They constitute a major group of ...
and some microbes uses
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP) rather than NAD.


Thermostable

Derived from a thermophilic bacterium, the enzyme is stable and active at much higher temperatures than conventional DNA ligases. Its half-life is 48 hours at 65 °C and greater than 1 hour at 95 °C. Ampligase DNA Ligase has been shown to be active for at least 500 thermal cycles (94 °C/80 °C) or 16 hours of cycling.10 This exceptional thermostability permits extremely high hybridization stringency and ligation specificity.


Measurement of activity

There are at least three different units used to measure the activity of DNA ligase: * Weiss unit - the amount of ligase that catalyzes the exchange of 1 nmole of 32P from inorganic
pyrophosphate In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate () and tetrasodium pyrophosphate (), among others. Often pyrophosphates a ...
to ATP in 20 minutes at 37°C. This is the one most commonly used. * Modrich-Lehman unit - this is rarely used, and one unit is defined as the amount of enzyme required to convert 100 nmoles of d(A-T)n to an exonuclease-III resistant form in 30 minutes under standard conditions. * Many commercial suppliers of ligases use an arbitrary unit based on the ability of ligase to ligate cohesive ends. These units are often more subjective than quantitative and lack precision.


Research applications

DNA ligases have become indispensable tools in modern molecular biology research for generating
recombinant DNA Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be fo ...
sequences. For example, DNA ligases are used with
restriction enzyme A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class o ...
s to insert DNA fragments, often
genes In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
, into
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria and ...
s. Controlling the optimal temperature is a vital aspect of performing efficient recombination experiments involving the ligation of cohesive-ended fragments. Most experiments use T4 DNA Ligase (isolated from
bacteriophage T4 Escherichia virus T4 is a species of bacteriophages that infect ''Escherichia coli'' bacteria. It is a double-stranded DNA virus in the subfamily '' Tevenvirinae'' of the family '' Straboviridae''. T4 is capable of undergoing only a lytic li ...
), which is most active at 37 °C. However, for optimal ligation efficiency with cohesive-ended fragments ("sticky ends"), the optimal enzyme temperature needs to be balanced with the melting temperature Tm of the sticky ends being ligated, the homologous pairing of the sticky ends will not be stable because the high temperature disrupts
hydrogen bonding In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
. A ligation reaction is most efficient when the sticky ends are already stably annealed, and disruption of the annealing ends would therefore result in low ligation efficiency. The shorter the overhang, the lower the Tm. Since blunt-ended DNA fragments have no cohesive ends to anneal, the melting temperature is not a factor to consider within the normal temperature range of the ligation reaction. The limiting factor in blunt end ligation is not the activity of the ligase but rather the number of alignments between DNA fragment ends that occur. The most efficient ligation temperature for blunt-ended DNA would therefore be the temperature at which the greatest number of alignments can occur. The majority of blunt-ended ligations are carried out at 14-25 °C overnight. The absence of stably annealed ends also means that the ligation efficiency is lowered, requiring a higher ligase concentration to be used. A novel use of DNA ligase can be seen in the field of nano chemistry, specifically in DNA origami.  DNA based self-assembly principles have proven useful for organizing nanoscale objects, such as biomolecules, nanomachines, nanoelectronic and photonic component. Assembly of such nano structure requires the creation of an intricate mesh of DNA molecules. Although DNA self-assembly is possible without any outside help using different substrates such as provision of catatonic surface of Aluminium foil, DNA ligase can provide the enzymatic assistance that is required to make DNA lattice structure from DNA over hangs.


History

The first DNA ligase was purified and characterized in 1967 by the Gellert, Lehman, Richardson, and Hurwitz laboratories. It was first purified and characterized by Weiss and Richardson using a six-step chromatographic-fractionation process beginning with elimination of cell debris and addition of streptomycin, followed by several Diethylaminoethyl (DEAE)-cellulose column washes and a final phosphocellulose fractionation. The final extract contained 10% of the activity initially recorded in the ''E. coli ''media; along the process it was discovered that ATP and Mg++ were necessary to optimize the reaction. The common commercially available DNA ligases were originally discovered in
bacteriophage T4 Escherichia virus T4 is a species of bacteriophages that infect ''Escherichia coli'' bacteria. It is a double-stranded DNA virus in the subfamily '' Tevenvirinae'' of the family '' Straboviridae''. T4 is capable of undergoing only a lytic li ...
, ''
E. coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escherichia'' that is commonly foun ...
'' and other
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
.


Disorders

Genetic deficiencies in human DNA ligases have been associated with clinical syndromes marked by immunodeficiency, radiation sensitivity, and developmental abnormalities, 
LIG4 syndrome LIG4 syndrome or ligase IV syndrome is an extremely rare condition caused by mutations in the DNA ligase IV (LIG4) gene. Some mutations in this gene are associated with a resistance against multiple myeloma and severe combined immunodeficiency. Se ...
(Ligase IV syndrome) is a rare disease associated with mutations in DNA ligase 4 and interferes with dsDNA break-repair mechanisms. Ligase IV syndrome causes immunodeficiency in individuals and is commonly associated with microcephaly and marrow hypoplasia. A list of prevalent diseases caused by lack of or malfunctioning of DNA ligase is as follows.


Xeroderma pigmentosum

Xeroderma pigmentosum Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in su ...
, which is commonly known as XP, is an inherited condition characterized by an extreme sensitivity to ultraviolet (UV) rays from sunlight. This condition mostly affects the eyes and areas of skin exposed to the sun. Some affected individuals also have problems involving the nervous system.


Ataxia-telangiectasia

Mutations in the ATM gene cause 
ataxia–telangiectasia Ataxia–telangiectasia (AT or A–T), also referred to as ataxia–telangiectasia syndrome or Louis–Bar syndrome, is a rare, neurodegenerative disease causing severe disability. Ataxia refers to poor coordination and telangiectasia to small dil ...
. The ATM gene provides instructions for making a protein that helps control cell division and is involved in DNA repair. This protein plays an important role in the normal development and activity of several body systems, including the nervous system and immune system. The ATM protein assists cells in recognizing damaged or broken DNA strands and coordinates DNA repair by activating enzymes that fix the broken strands. Efficient repair of damaged DNA strands helps maintain the stability of the cell's genetic information. Affected children typically develop difficulty walking, problems with balance and hand coordination, involuntary jerking movements (chorea), muscle twitches (myoclonus), and disturbances in nerve function (neuropathy). The movement problems typically cause people to require wheelchair assistance by adolescence. People with this disorder also have slurred speech and trouble moving their eyes to look side-to-side (oculomotor apraxia).


Fanconi Anemia

Fanconi anemia Fanconi anemia (FA) is a rare, autosomal recessive genetic disease characterized by aplastic anemia, congenital defects, endocrinological abnormalities, and an increased incidence of developing cancer. The study of Fanconi anemia has improve ...
(FA) is a rare, inherited blood disorder that leads to bone marrow failure. FA prevents bone marrow from making enough new blood cells for the body to work normally. FA also can cause the bone marrow to make many faulty blood cells. This can lead to serious health problems, such as
leukemia Leukemia ( also spelled leukaemia; pronounced ) is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or '' ...
.


Bloom syndrome

Bloom syndrome Bloom syndrome (often abbreviated as BS in literature) is a rare autosomal recessive genetic disorder characterized by short stature, predisposition to the development of cancer, and genomic instability. BS is caused by mutations in the '' BLM'' g ...
results in skin that is sensitive to sun exposure, and usually the development of a butterfly-shaped patch of reddened skin across the nose and cheeks. A skin rash can also appear on other areas that are typically exposed to the sun, such as the back of the hands and the forearms. Small clusters of enlarged blood vessels (telangiectases) often appear in the rash; telangiectases can also occur in the eyes. Other skin features include patches of skin that are lighter or darker than the surrounding areas (hypopigmentation or hyperpigmentation respectively). These patches appear on areas of the skin that are not exposed to the sun, and their development is not related to the rashes.


As a drug target

In recent studies, human DNA ligase I was used in
Computer-aided drug design Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machine ...
to identify DNA ligase inhibitors as possible therapeutic agents to treat cancer. Since excessive cell growth is a hallmark of cancer development, targeted chemotherapy that disrupts the functioning of DNA ligase can impede adjuvant cancer forms. Furthermore, it has been shown that DNA ligases can be broadly divided into two categories, namely, ATP- and NAD+-dependent. Previous research has shown that although NAD+-dependent DNA ligases have been discovered in sporadic cellular or viral niches outside the bacterial domain of life, there is no instance in which a NAD+-dependent ligase is present in a
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
organism. The presence solely in non-eukaryotic organisms, unique substrate specificity, and distinctive domain structure of NAD+ dependent compared with ATP-dependent human DNA ligases together make NAD+-dependent ligases ideal targets for the development of new antibacterial drugs.


See also

*
DNA end DNA ends refer to the properties of the ends of linear DNA molecules, which in molecular biology are described as "sticky" or "blunt" based on the shape of the complementary strands at the terminus. In sticky ends, one strand is longer than the o ...
*
Lagging strand In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms, acting as the most essential part of biological inheritance ...
*
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
*
Okazaki fragment Okazaki fragments are short sequences of DNA nucleotides (approximately 150 to 200 base pairs long in eukaryotes) which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA ...
*
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
*
Sequencing by ligation Sequencing by ligation is a DNA sequencing method that uses the enzyme DNA ligase to identify the nucleotide present at a given position in a DNA sequence. Unlike most currently popular DNA sequencing methods, this method does not use a DNA polymer ...


References


External links


DNA Ligase: PDB molecule of the month



OpenWetWare DNA Ligation Protocol
* * * {{DEFAULTSORT:Dna Ligase EC 6.5 Biotechnology DNA replication Enzymes Genetics techniques