Swarts Reaction
   HOME

TheInfoList



OR:

Swarts fluorination is a process whereby the
chlorine Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s in a compound – generally an organic compound, but experiments have been performed using
silane Silane (Silicane) is an inorganic compound with chemical formula . It is a colorless, pyrophoric gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental ...
s – are replaced with
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
, by treatment with
antimony trifluoride Antimony trifluoride is the inorganic compound with the formula SbF3. Sometimes called Swarts' reagent, it is one of two principal fluorides of antimony, the other being SbF5. It appears as a white solid. As well as some industrial applications, ...
in the presence of chlorine or of
antimony pentachloride Antimony pentachloride is a chemical compound with the formula SbCl5. It is a colourless oil, but typical samples are yellowish due to dissolved chlorine. Owing to its tendency to hydrolyse to hydrochloric acid, SbCl5 is a highly corrosive subs ...
. Some metal fluorides are particularly more useful than others, including silver(I) fluoride, mercurous fluoride, cobalt(II) fluoride and aforementioned antimony. Heating the mixture of the metal fluoride and the haloalkane (chlorine and bromine are replaced readily) yields the desired fluoroalkane. In some particularly reactive cases, heating is unnecessary; shaking or stirring the reaction mixture is sufficient. This reaction has a good yield. The process was initially described by Frédéric Jean Edmond Swarts in 1892.


Mechanism

The active species is antimony trifluorodichloride 2, which is produced
in situ is a Latin phrase meaning 'in place' or 'on site', derived from ' ('in') and ' ( ablative of ''situs'', ). The term typically refers to the examination or occurrence of a process within its original context, without relocation. The term is use ...
from the reaction between antimony trifluoride 1 and chlorine; this compound can also be produced in bulk, according to a patent of John Weaver. This then undergoes a halogen exchange with a haloalkane (here trichloroethylsilane), as in 3, replacing the halogen atom (here chlorine) with fluorine and affording the fluorinated product 4.


References

Halogenation reactions Substitution reactions Name reactions {{Reaction-stub