HOME

TheInfoList



OR:

In
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
, a supersolid is a spatially ordered (i.e.
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
) material with
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortex, vortices that continue to rotate indefinitely. Superfluidity occurs ...
properties. In the case of
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
, it has been conjectured since the 1960s that it might be possible to create a supersolid. Starting from 2017, a definitive proof for the existence of this state was provided by several experiments using atomic
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s. The general conditions required for supersolidity to emerge in a certain substance are a topic of ongoing research.


Background

A supersolid is a special quantum state of matter where particles form a rigid, spatially ordered structure, but also flow with zero
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
. This is in contradiction to the intuition that flow, and in particular
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortex, vortices that continue to rotate indefinitely. Superfluidity occurs ...
flow with zero viscosity, is a property exclusive to the
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
state, e.g., superconducting electron and neutron fluids, gases with
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s, or unconventional liquids such as helium-4 or helium-3 at sufficiently low temperature. For more than 50 years it was thus unclear whether the supersolid state can exist.


Experiments using helium

While several experiments yielded negative results, in the 1980s, John Goodkind discovered the first anomaly in a solid by using
ultrasound Ultrasound is sound with frequency, frequencies greater than 20 Hertz, kilohertz. This frequency is the approximate upper audible hearing range, limit of human hearing in healthy young adults. The physical principles of acoustic waves apply ...
. Inspired by his observation, in 2004 Eun-Seong Kim and Moses Chan at
Pennsylvania State University The Pennsylvania State University (Penn State or PSU) is a Public university, public Commonwealth System of Higher Education, state-related Land-grant university, land-grant research university with campuses and facilities throughout Pennsyl ...
saw phenomena which were interpreted as supersolid behavior. Specifically, they observed a non-classical rotational moment of inertia of a torsional oscillator. This observation could not be explained by classical models but was consistent with superfluid-like behavior of a small percentage of the helium atoms contained within the oscillator. This observation triggered a large number of follow-up studies to reveal the role played by crystal defects or helium-3 impurities. Further experimentation has cast some doubt on the existence of a true supersolid in helium. Most importantly, it was shown that the observed phenomena could be largely explained due to changes in the elastic properties of the helium. In 2012, Chan repeated his original experiments with a new apparatus that was designed to eliminate any such contributions. In this experiment, Chan and his coauthors found no evidence of supersolidity.


Experiments using ultracold quantum gases

In 2017, two research groups from ETH Zurich and from MIT reported on the creation of an ultracold quantum gas with supersolid properties. The Zurich group placed a
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
inside two optical resonators, which enhanced the atomic interactions until they started to spontaneously crystallize and form a solid that maintains the inherent superfluidity of Bose–Einstein condensates. This setting realises a special form of a supersolid, the so-called lattice supersolid, where atoms are pinned to the sites of an externally imposed lattice structure. The MIT group exposed a Bose–Einstein condensate in a double-well potential to light beams that created an effective spin–orbit coupling. The interference between the atoms on the two spin–orbit coupled lattice sites gave rise to a characteristic density modulation. In 2019, three groups from Stuttgart, Florence, and Innsbruck observed supersolid properties in dipolar
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s formed from lanthanide atoms. In these systems, supersolidity emerges directly from the atomic interactions, without the need for an external optical lattice. This facilitated also the direct observation of superfluid flow and hence the definitive proof for the existence of the supersolid state of matter. In 2021, confocal cavity quantum electrodynamics with a Bose–Einstein condensate was used to create a supersolid that possesses a key property of solids, vibration. That is, a supersolid was created that possesses lattice phonons with a Goldstone mode dispersion exhibiting a 16 cm/s speed of sound. In 2021, dysprosium was used to create a 2-dimensional supersolid quantum gas, in 2022, the same team created a supersolid disk in a round trap and in 2024 they reported the observation of quantum vortices in the supersolid phase.


Theory

In most theories of this state, it is supposed that vacancies – empty sites normally occupied by particles in an ideal crystal – lead to supersolidity. These vacancies are caused by
zero-point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly Quantum fluctuation, fluctuate in their lowest energy state as described by the Heisen ...
, which also causes them to move from site to site as
wave In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from List of types of equilibrium, equilibrium) of one or more quantities. ''Periodic waves'' oscillate repeatedly about an equilibrium ...
s. Because vacancies are
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s, if such clouds of vacancies can exist at very low temperatures, then a Bose–Einstein condensation of vacancies could occur at temperatures less than a few tenths of a Kelvin. A coherent flow of vacancies is equivalent to a "superflow" (frictionless flow) of particles in the opposite direction. Despite the presence of the gas of vacancies, the ordered structure of a crystal is maintained, although with less than one particle on each lattice site on average. Alternatively, a supersolid can also emerge from a superfluid. In this situation, which is realised in the experiments with atomic Bose–Einstein condensates, the spatially ordered structure is a modulation on top of the superfluid density distribution.


See also

* Superfluid film * Superglass * Quasi-solid


References


External links


''Nature'' story on a supersolid experiment

APS ''Physics Magazine'' on a vibrating supersolid experiment


* {{States of matter Condensed matter physics Phases of matter Liquid helium