HOME

TheInfoList



OR:

A superluminous supernova (SLSN, plural superluminous supernovae or SLSNe) is a type of stellar explosion with a
luminosity Luminosity is an absolute measure of radiated electromagnetic radiation, electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electroma ...
10 or more times higher than that of standard
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e. Like
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly
massive star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s, millisecond
magnetar A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.Ward; Br ...
s, interaction with circumstellar material (CSM model), or pair-instability supernovae. The first confirmed superluminous supernova connected to a gamma ray burst was not found until 2003, when GRB 030329 illuminated the Leo constellation. SN 2003dh represented the death of a star 25 times more massive than the Sun, with material being blasted out at over a tenth the speed of light. Stars with are likely to produce superluminous supernovae.


Classification

Discoveries of many SLSNe in the 21st century showed that not only were they more luminous by an order of magnitude than most supernovae, their
remnant Remnant or remnants may refer to: Religion * Remnant (Bible), a recurring theme in the Bible * Remnant (Seventh-day Adventist belief), the remnant theme in the Seventh-day Adventist Church * ''The Remnant'' (newspaper), a traditional Catholic n ...
s were also unlikely to be powered by the typical radioactive decay that is responsible for the observed energies of conventional supernovae. SLSNe events use a separate classification scheme to distinguish them from the conventional type Ia, type Ib/Ic, and type II supernovae, roughly distinguishing between the spectral signature of hydrogen-rich and hydrogen-poor events. Hydrogen-rich SLSNe are classified as Type SLSN-II, with observed radiation passing through the changing opacity of a thick expanding hydrogen envelope. Most hydrogen-poor events are classified as Type SLSN-I, with its visible radiation produced from a large expanding envelope of material powered by an unknown mechanism. A third less common group of SLSNe is also hydrogen-poor and abnormally luminous, referred to as SLSN-R, clearly powered by radioactivity from 56Ni. Increasing number of discoveries find that some SLSNe do not fit cleanly into these three classes, so further sub-classes or unique events have been described. Many or all SLSN-I show spectra without hydrogen or helium but have lightcurves comparable to conventional type Ic supernovae, and are now classed as SLSN-Ic. PS1-10afx is an unusually red hydrogen-free SLSN with an extremely rapid rise to a near-record peak luminosity and an unusually rapid decline. PS1-11ap is similar to a type Ic SLSN but has an unusually slow rise and decline.


Astrophysical models

A wide variety of causes have been proposed to explain events that are an order of magnitude or more greater than standard supernovae. The collapsar and CSM (circumstellar material) models are generally accepted and a number of events are well-observed. Other models are still only tentatively accepted or remain entirely theoretical.


Collapsar model

The collapsar model is a type of superluminous supernova that produces a gravitationally collapsed object, or
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
. The word "collapsar", short for "collapsed
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
", was formerly used to refer to the end product of stellar
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
, a stellar-mass black hole. The word is now sometimes used to refer to a specific model for the collapse of a fast-rotating star. When core collapse occurs in a star with a core at least around fifteen times the
Sun's mass The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies a ...
()—though chemical composition and rotational rate are also significant—the explosion energy is insufficient to expel the outer layers of the star, and it will collapse into a black hole without producing a visible supernova outburst. A star with a core mass slightly below this level—in the range of —will undergo a supernova explosion, but so much of the ejected mass falls back onto the core remnant that it still collapses into a black hole. If such a star is rotating slowly, then it will produce a faint supernova, but if the star is rotating quickly enough, then the fallback to the black hole will produce
relativistic jets An astrophysical jet is an astronomy, astronomical phenomenon where outflows of Ionization, ionised matter are emitted as extended beams along the rotation, axis of rotation. When this greatly accelerated matter in the beam approaches the speed of ...
. The energy that these jets transfer into the ejected shell renders the visible outburst substantially more luminous than a standard supernova. The jets also beam high energy particles and gamma rays directly outward and thereby produce x-ray or gamma-ray bursts; the jets can last for several seconds or longer and correspond to long-duration gamma-ray bursts, but they do not appear to explain short-duration gamma-ray bursts. Stars with cores have an approximate total mass of , assuming the star has not undergone significant mass loss. Such a star will still have a hydrogen envelope and will explode as a Type II supernova. Faint Type II supernovae have been observed, but no definite candidates for a Type II SLSN (except type IIn, which are not thought to be jet supernovae). Only the very lowest
metallicity In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matt ...
population III stars will reach this stage of their life with little mass loss. Other stars, including most of those visible to us, will have had most of their outer layers blown away by their high luminosity and become Wolf-Rayet stars. Some theories propose these will produce either Type Ib or Type Ic supernovae, but none of these events so far has been observed in nature. Many observed SLSNe are likely Type Ic. Those associated with gamma-ray bursts are almost always Type Ic, being very good candidates for having relativistic jets produced by fallback to a black hole. However, not all Type Ic SLSNe correspond to observed gamma-ray bursts but the events would only be visible if one of the jets were aimed towards us. In recent years, much observational data on long-duration gamma-ray bursts have significantly increased our understanding of these events and made clear that the collapsar
model A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided in ...
produces explosions that differ only in detail from more or less ordinary supernovae and have energy ranges from approximately normal to around 100 times larger. A good example of a collapsar SLSN is SN 1998bw, which was associated with the gamma-ray burst GRB 980425. It is classified as a type Ic supernova due to its distinctive spectral properties in the
radio Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
spectrum, indicating the presence of relativistic matter.


Circumstellar material model

Almost all observed SLSNe have had spectra similar to either a type Ic or type IIn supernova. The type Ic SLSNe are thought to be produced by jets from fallback to a black hole, but type IIn SLSNe have significantly different light curves and are not associated with gamma-ray bursts. Type IIn supernovae are all embedded in a dense nebula probably expelled from the progenitor star itself, and this circumstellar material (CSM) is thought to be the cause of the extra luminosity. When material expelled in an initial normal supernova explosion meets dense nebular material or dust close to the star, the shockwave converts kinetic energy efficiently into visible radiation. This effect greatly enhances these extended duration and extremely luminous supernovae, even though the initial explosive energy was the same as that of normal supernovae. Although any supernova type could potentially produce Type IIn SLSNe, theoretical constraints on the surrounding CSM sizes and densities do suggest that it will almost always be produced from the central progenitor star itself immediately prior to the observed supernova event. Such stars are likely candidates of
hypergiant A hypergiant ( luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term ''hypergiant'' is defined as luminosity class 0 (zero) in the MK ...
s or LBVs that appear to be undergoing substantial mass loss, due to Eddington instability, for example, SN2005gl.


Pair-instability supernova

Another type of suspected SLSN is a pair-instability supernova, of which SN 2006gy may possibly be the first observed example. This supernova event was observed in a galaxy about 238 million light years (73 megaparsecs) from Earth. The theoretical basis for pair-instability collapse has been known for many decades and was suggested as a dominant source of higher mass elements in the early universe as super-massive population III stars exploded. In a pair-instability supernova, the
pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers ...
effect causes a sudden pressure drop in the star's core, leading to a rapid partial collapse.
Gravitational potential energy Gravitational energy or gravitational potential energy is the potential energy an object with mass has due to the gravitational potential of its position in a gravitational field. Mathematically, it is the minimum Work (physics), mechanical work t ...
from the collapse causes runaway fusion of the core which entirely disrupts the star, leaving no remnant. Models show that this phenomenon only happens in stars with extremely low metallicity and masses between about 130 and 260 times the Sun, making them extremely unlikely in the local universe. Although originally expected to produce SLSN explosions hundreds of times greater than a normal supernova, current models predict that they actually produce luminosities ranging from about the same as a normal core collapse supernova to perhaps 50 times brighter, although remaining bright for much longer.


Magnetar energy release

Models of the creation and subsequent spin-down of a
magnetar A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.Ward; Br ...
yield much higher luminosities than regular supernova events and match the observed properties of at least some SLSNe. In cases where pair-instability supernova may not be a good fit for explaining a SLSN, a magnetar explanation is more plausible.


Other models

There are still models for SLSN explosions produced from binary systems, white dwarf or neutron stars in unusual arrangements or undergoing mergers, and some of these are proposed to account for some observed gamma-ray bursts.


See also

* SN 2018cow * * * *


References


Further reading

* * * *


External links


List of all superluminous supernovae
a
The Open Supernova Catalog
. {{Star Stellar phenomena Hypergiants Astronomical events + Wolf–Rayet stars Stellar evolution