Superconductor-insulator-superconductor Tunnel Junction
   HOME

TheInfoList



OR:

The superconducting tunnel junction (STJ) – also known as a superconductor–insulator–superconductor tunnel junction (SIS) – is an
electronic Electronic may refer to: *Electronics, the science of how to control electric energy in semiconductors * ''Electronics'' (magazine), a defunct American trade journal *Electronic storage, the storage of data using an electronic device *Electronic c ...
device consisting of two
superconductors Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases ...
separated by a very thin layer of insulating material. Current passes through the junction via the process of
quantum tunneling In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
. The STJ is a type of
Josephson junction In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 ...
, though not all the properties of the STJ are described by the Josephson effect. These devices have a wide range of applications, including high-sensitivity
detectors A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal. In the broadest definition, a sensor is a devi ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
,
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
s, high speed digital circuit elements, and
quantum computing A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using s ...
circuits.


Quantum tunneling

All
currents Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (hy ...
flowing through the STJ pass through the insulating layer via the process of
quantum tunneling In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
. There are two components to the tunneling current. The first is from the tunneling of
Cooper pairs In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
. This supercurrent is described by the ac and dc
Josephson relations In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 ...
, first predicted by Brian David Josephson in 1962. For this prediction, Josephson received the
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
in 1973. The second is the
quasiparticle In condensed matter physics, a quasiparticle is a concept used to describe a collective behavior of a group of particles that can be treated as if they were a single particle. Formally, quasiparticles and collective excitations are closely relate ...
current, which, in the limit of zero temperature, arises when the energy from the bias voltage eV exceeds twice the value of superconducting energy gap Δ. At finite temperature, a small quasiparticle tunneling current – called the subgap current – is present even for voltages less than twice the energy gap due to the thermal promotion of quasiparticles above the gap. If the STJ is irradiated with
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
of frequency f, the dc current-voltage curve will exhibit both Shapiro steps and steps due to photon-assisted tunneling. Shapiro steps arise from the response of the supercurrent and occur at voltages equal to nhf/(2e), where h is the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
, e is the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
charge, and n is an
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. Photon-assisted tunneling arises from the response of the quasiparticles and gives rise to steps displaced in voltage by nhf/e relative to the gap voltage.


Device fabrication

The device is typically fabricated by first depositing a thin film of a superconducting metal such as
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
on an insulating substrate such as
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
. The deposition is performed inside a
vacuum chamber A vacuum chamber is a rigid enclosure from which air and other gases are removed by a vacuum pump. This results in a low-pressure environment within the chamber, commonly referred to as a vacuum. A vacuum environment allows researchers to c ...
.
Oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
gas is then introduced into the chamber, resulting in the formation of an insulating layer of
aluminum oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
(Al_O_) with a typical thickness of several
nanometre 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling), is a unit of length ...
s. After the vacuum is restored, an overlapping layer of superconducting metal is deposited, completing the STJ. To create a well-defined overlap region, a procedure known as the Niemeyer-Dolan technique is commonly used. This technique uses a suspended bridge of
resist A resist, used in many areas of manufacturing and art, is something that is added to parts of an object to create a pattern by protecting these parts from being affected by a subsequent stage in the process. Often the resist is then removed. For ...
with a double-angle deposition to define the junction.
Aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
is widely used for making superconducting tunnel junctions because of its unique ability to form a very thin (2–3 nm) insulating
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
layer with no defects that
short-circuit A short circuit (sometimes abbreviated to short or s/c) is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit ...
the insulating layer. The
superconducting Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases g ...
critical temperature of aluminum is approximately 1.2  K. For many applications, it is convenient to have a device that is superconducting at a higher temperature, in particular at a temperature above the
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
of
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
, which is 4.2 K at atmospheric pressure. One approach to achieving this is to use
niobium Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...
, which has a superconducting critical temperature in bulk form of 9.3 K. Niobium, however, does not form an oxide that is suitable for making tunnel junctions. To form an insulating oxide, the first layer of niobium can be coated with a very thin layer (approximately 5 nm) of aluminum, which is then oxidized to form a high quality aluminum oxide tunnel barrier before the final layer of niobium is deposited. The thin aluminum layer is proximitized by the thicker niobium, and the resulting device has a superconducting critical temperature above 4.2 K. Early work used
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
-lead oxide-lead tunnel junctions.
Lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
has a superconducting critical temperature of 7.2 K in bulk form, but lead oxide tends to develop defects (sometimes called pinhole defects) that short-circuit the tunnel barrier when the device is thermally cycled between
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
temperatures and room temperature, so lead is no longer widely used to make STJs.


Applications


Radio astronomy

STJs are the most sensitive
heterodyne A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called ''heterodyning'', which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is us ...
receivers in the 100 GHz to 1000 GHz frequency range, and hence are used for
radio astronomy Radio astronomy is a subfield of astronomy that studies Astronomical object, celestial objects using radio waves. It started in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observat ...
at these frequencies. In this application, the STJ is dc biased at a voltage just below the gap voltage (, V, = 2\Delta /e). A high frequency signal from an astronomical object of interest is focused onto the STJ, along with a
local oscillator In electronics, the term local oscillator (LO) refers to an electronic oscillator when used in conjunction with a Frequency mixer, mixer to change the frequency of a signal. This frequency conversion process, also called Heterodyne, heterodyning ...
source. Photons absorbed by the STJ allow quasiparticles to tunnel via the process of photon-assisted tunneling. This photon-assisted tunneling changes the current-voltage curve, creating a nonlinearity that produces an output at the difference frequency of the astronomical signal and the local oscillator. This output is a frequency down-converted version of the astronomical signal. These receivers are so sensitive that an accurate description of the device performance must take into account the effects of
quantum noise Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the appa ...
.


Single-photon detection

In addition to
heterodyne A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called ''heterodyning'', which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is us ...
detection, STJs can also be used as direct detectors. In this application, the STJ is biased with a dc voltage less than the gap voltage. A
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
absorbed in the superconductor breaks
Cooper pairs In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
and creates
quasiparticles In condensed matter physics, a quasiparticle is a concept used to describe a collective behavior of a group of particles that can be treated as if they were a single particle. Formally, quasiparticles and collective excitations are closely relate ...
. The quasiparticles tunnel across the junction in the direction of the applied voltage, and the resulting tunneling current is proportional to the photon energy. STJ devices have been employed as single-photon detectors for photon frequencies ranging from
X-rays An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
to the
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
.


SQUIDs

The
superconducting quantum interference device A squid (: squid) is a mollusc with an elongated soft body, large eyes, eight arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also called ''squid'' ...
or
SQUID A squid (: squid) is a mollusc with an elongated soft body, large eyes, eight cephalopod limb, arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also ...
is based on a superconducting loop containing Josephson junctions. SQUIDs are the world's most sensitive
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
s, capable of measuring a single
magnetic flux quantum The magnetic flux, represented by the symbol , threading some contour or loop is defined as the magnetic field multiplied by the loop area , i.e. . Both and can be arbitrary, meaning that the flux can be as well but increments of flux can be ...
.


Quantum computing

Superconducting quantum computing Superconducting quantum computing is a branch of Solid-state physics, solid state physics and quantum computing that implements superconductivity, superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dot ...
utilizes STJ-based circuits, including
charge qubit In quantum computing, a charge qubit (also known as Cooper-pair box) is a qubit whose basis states are charge states (i.e. states which represent the presence or absence of excess Cooper pairs in the island). In superconducting quantum computing, ...
s,
flux qubit In quantum computing, more specifically in superconducting quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These d ...
s and
phase qubit In quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or ...
s.


RSFQ

The STJ is the primary active element in
rapid single flux quantum In electronics, rapid single flux quantum (RSFQ) is a Digital data, digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic ...
or RSFQ fast logic circuits.


Josephson voltage standard

When a high frequency current is applied to a Josephson junction, the ac Josephson current will synchronize with the applied frequency giving rise to regions of constant voltage in the I–V curve of the device (Shapiro steps). For the purpose of voltage standards, these steps occur at the voltages nf/K_\text where n is an integer, f is the applied frequency and the Josephson constant K_\text = is a constant that is equal to 2e/h . These steps provide an exact conversion from frequency to voltage. Because frequency can be measured with very high precision, this effect is used as the basis of the Josephson voltage standard, which implements the SI definition of the
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
.


Josephson diode

In the case that the STJ shows asymmetric Josephson tunneling, the junction can become a Josephson diode.


See also

*
Superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
*
Josephson effect In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 ...
*
Macroscopic quantum phenomena Macroscopic quantum phenomena are processes showing Quantum mechanics, quantum behavior at the macroscopic scale, rather than at the Atom, atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena ar ...
*
Quantum tunneling In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
*
Superconducting quantum interference device A squid (: squid) is a mollusc with an elongated soft body, large eyes, eight arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also called ''squid'' ...
(SQUID) *
Superconducting quantum computing Superconducting quantum computing is a branch of Solid-state physics, solid state physics and quantum computing that implements superconductivity, superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dot ...
*
Rapid single flux quantum In electronics, rapid single flux quantum (RSFQ) is a Digital data, digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic ...
(RSFQ) *
Cryogenic particle detectors Cryogenic particle detectors operate at very low temperature, typically only a few degrees above absolute zero. These sensors interact with an energetic elementary particle (such as a photon) and deliver a signal that can be related to the type of ...


References

{{reflist Superconductivity Josephson effect Quantum electronics Superconducting detectors Sensors Radio astronomy Mesoscopic physics