Subset With Expansion
   HOME

TheInfoList



OR:

In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:
Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''.
The validity of this technique can be seen as a consequence of universal generalization: the technique shows (c \in A) \Rightarrow (c \in B) for an arbitrarily chosen element ''c''. Universal generalisation then implies \forall x \left(x \in A \Rightarrow x \in B\right), which is equivalent to A \subseteq B, as stated above.


Definition

If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' is a superset of ''A'', denoted by B \supseteq A. If ''A'' is a subset of ''B'', but ''A'' is not equal to ''B'' (i.e. there exists at least one element of B which is not an element of ''A''), then: :*''A'' is a proper (or strict) subset of ''B'', denoted by A \subsetneq B, or equivalently, :* ''B'' is a proper (or strict) superset of ''A'', denoted by B \supsetneq A. The
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
, written \ or \varnothing, has no elements, and therefore is vacuously a subset of any set ''X''.


Basic properties

* '' Reflexivity'': Given any set A, A \subseteq A * '' Transitivity'': If A \subseteq B and B \subseteq C, then A \subseteq C * '' Antisymmetry'': If A \subseteq B and B \subseteq A, then A = B.


Proper subset

* '' Irreflexivity'': Given any set A, A \subsetneq A is False. * '' Transitivity'': If A \subsetneq B and B \subsetneq C, then A \subsetneq C * ''
Asymmetry Asymmetry is the absence of, or a violation of, symmetry (the property of an object being invariant to a transformation, such as reflection). Symmetry is an important property of both physical and abstract systems and it may be displayed in pre ...
'': If A \subsetneq B then B \subsetneq A is False.


⊂ and ⊃ symbols

Some authors use the symbols \subset and \supset to indicate and respectively; that is, with the same meaning as and instead of the symbols \subseteq and \supseteq. For example, for these authors, it is true of every set ''A'' that A \subset A. (a reflexive relation). Other authors prefer to use the symbols \subset and \supset to indicate (also called strict) subset and superset respectively; that is, with the same meaning as and instead of the symbols \subsetneq and \supsetneq. This usage makes \subseteq and \subset analogous to the inequality symbols \leq and <. For example, if x \leq y, then ''x'' may or may not equal ''y'', but if x < y, then ''x'' definitely does not equal ''y'', and ''is'' less than ''y'' (an irreflexive relation). Similarly, using the convention that \subset is proper subset, if A \subseteq B, then ''A'' may or may not equal ''B'', but if A \subset B, then ''A'' definitely does not equal ''B''.


Examples of subsets

* The set A = is a proper subset of B = , thus both expressions A \subseteq B and A \subsetneq B are true. * The set D = is a subset (but a proper subset) of E = , thus D \subseteq E is true, and D \subsetneq E is not true (false). * The set is a proper subset of * The set of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s is a proper subset of the set of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s; likewise, the set of points in a
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
is a proper subset of the set of points in a line. These are two examples in which both the subset and the whole set are infinite, and the subset has the same
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
(the concept that corresponds to size, that is, the number of elements, of a finite set) as the whole; such cases can run counter to one's initial intuition. * The set of
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for examp ...
is a proper subset of the set of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. In this example, both sets are infinite, but the latter set has a larger cardinality (or ) than the former set. Another example in an
Euler diagram An Euler diagram (, ) is a diagrammatic means of representing Set (mathematics), sets and their relationships. They are particularly useful for explaining complex hierarchies and overlapping definitions. They are similar to another set diagrammi ...
: File:Example of A is a proper subset of B.svg, A is a proper subset of B. File:Example of C is no proper subset of B.svg, C is a subset but not a proper subset of B.


Power set

The set of all subsets of S is called its power set, and is denoted by \mathcal(S). The inclusion relation \subseteq is a partial order on the set \mathcal(S) defined by A \leq B \iff A \subseteq B. We may also partially order \mathcal(S) by reverse set inclusion by defining A \leq B \text B \subseteq A. For the power set \operatorname(S) of a set ''S'', the inclusion partial order is—up to an order isomorphism—the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of k = , S, (the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of ''S'') copies of the partial order on \ for which 0 < 1. This can be illustrated by enumerating S = \left\,, and associating with each subset T \subseteq S (i.e., each element of 2^S) the ''k''-tuple from \^k, of which the ''i''th coordinate is 1 if and only if s_i is a member of ''T''. The set of all k-subsets of A is denoted by \tbinom, in analogue with the notation for binomial coefficients, which count the number of k-subsets of an n-element set. In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, the notation k is also common, especially when k is a transfinite
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
.


Other properties of inclusion

* A set ''A'' is a subset of ''B''
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
their intersection is equal to A. Formally: : A \subseteq B \text A \cap B = A. * A set ''A'' is a subset of ''B'' if and only if their union is equal to B. Formally: : A \subseteq B \text A \cup B = B. * A finite set ''A'' is a subset of ''B'', if and only if the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of their intersection is equal to the cardinality of A. Formally: : A \subseteq B \text , A \cap B, = , A, . * The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the
join and meet In mathematics, specifically order theory, the join of a subset S of a partially ordered set P is the supremum (least upper bound) of S, denoted \bigvee S, and similarly, the meet of S is the infimum (greatest lower bound), denoted \bigwedge S. ...
are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. * Inclusion is the canonical partial order, in the sense that every partially ordered set (X, \preceq) is isomorphic to some collection of sets ordered by inclusion. The
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s are a simple example: if each ordinal ''n'' is identified with the set /math> of all ordinals less than or equal to ''n'', then a \leq b if and only if \subseteq


See also

* * * * * * * *


References


Bibliography

*


External links

* * {{Common logical symbols Basic concepts in set theory