In
mathematics, a canonical map, also called a natural map, is a
map or
morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphis ...
between objects that arises naturally from the definition or the construction of the objects. Often, it is a map which preserves the widest amount of structure. A choice of a canonical map sometimes depends on a convention (e.g., a sign convention).
A closely related notion is a structure map or structure morphism; the map or morphism that comes with the given structure on the object. These are also sometimes called canonical maps.
A
canonical isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
is a canonical map that is also an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
(i.e.,
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
). In some contexts, it might be necessary to address an issue of ''choices'' of canonical maps or canonical isomorphisms; for a typical example, see
prestack
In algebraic geometry, a prestack ''F'' over a category ''C'' equipped with some Grothendieck topology is a category together with a functor ''p'': ''F'' → ''C'' satisfying a certain lifting condition and such that (when the fibers are groupoid ...
.
For a discussion of the problem of defining a canonical map see Kevin Buzzard's talk at the 2022 Grothendieck conference.
Examples
*If ''N'' is a
normal subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G ...
of a
group ''G'', then there is a canonical
surjective
In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
group homomorphism
In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that
: h(u*v) = h(u) \cdot h(v)
...
from ''G'' to the
quotient group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For exam ...
''G''/''N,'' that sends an element ''g'' to the
coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
determined by ''g''.
*If ''I'' is an
ideal of a
ring ''R'', then there is a canonical surjective
ring homomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is:
:addition prese ...
from ''R'' onto the
quotient ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. I ...
''R/I'', that sends an element ''r'' to its coset ''I+r''.
*If ''V'' is a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
, then there is a canonical map from ''V'' to the second
dual space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by con ...
of ''V,'' that sends a vector ''v'' to the
linear functional
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers).
If is a vector space over a field , th ...
''f''
''v'' defined by ''f''
''v''(λ) = λ(''v'').
*If is a homomorphism between
commutative rings, then ''S'' can be viewed as an
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
over ''R''. The ring homomorphism ''f'' is then called the structure map (for the algebra structure). The corresponding map on the
prime spectra is also called the structure map.
*If ''E'' is a
vector bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
over a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
''X'', then the projection map from ''E'' to ''X'' is the structure map.
*In
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a canonical map is a function ''f'' mapping a set ''X'' → ''X/R'' (''X'' modulo ''R''), where ''R'' is an equivalence relation on ''X'', that takes each ''x'' in ''X'' to the
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
'x''modulo ''R''.
References
Mathematical terminology
{{math-stub