String duality is a class of
symmetries in
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
that link different
string theories, theories which assume that the fundamental building blocks of the
universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
are
string
String or strings may refer to:
*String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects
Arts, entertainment, and media Films
* ''Strings'' (1991 film), a Canadian anim ...
s instead of
point particle
A point particle, ideal particle or point-like particle (often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take ...
s.
Overview
Before the so-called "duality revolution" there were believed to be five distinct versions of string theory, plus the (unstable) bosonic and gluonic theories.
Note that in the type IIA and type IIB string theories closed strings are allowed to move everywhere throughout the ten-dimensional space-time (called the ''bulk''), while open strings have their ends attached to
D-brane
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named.
D-branes are typically classified by their spatial dimensi ...
s, which are membranes of lower dimensionality (their dimension is odd - 1,3,5,7 or 9 - in type IIA and even - 0,2,4,6 or 8 - in type IIB, including the time direction).
Before the 1990s, string theorists believed there were five distinct superstring theories:
type I,
types IIA and
IIB, and the two
heterotic string theories (
SO(32) and
''E''8×''E''8). The thinking was that out of these five candidate theories, only one was the actual
theory of everything
A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical physics, theoretical framework of physics that fully explains and links togeth ...
, and that theory was the theory whose low energy limit, with ten dimensions spacetime
compactified down to four, matched the physics observed in our world today. It is now known that the five superstring theories are not fundamental, but are instead different limits of a more fundamental theory, dubbed
M-theory
In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1 ...
. These theories are related by transformations called dualities. If two theories are related by a duality transformation, each observable of the first theory can be mapped in some way to the second theory to yield equivalent predictions. The two theories are then said to be dual to one another under that transformation. Put differently, the two theories are two mathematically different descriptions of the same phenomena. A simple example of a duality is the equivalence of
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
upon replacing matter with antimatter; describing our universe in terms of anti-particles would yield identical predictions for any possible experiment.
String dualities often link quantities that appear to be separate: Large and small distance scales, strong and weak coupling strengths. These quantities have always marked very distinct limits of behavior of a physical system, in both
classical field theory
A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called qua ...
and quantum
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
. But strings can obscure the difference between large and small, strong and weak, and this is how these five very different theories end up being related.
T-duality
Suppose we are in ten spacetime dimensions,
which means we have nine space dimensions and one time. Take one of those nine space dimensions and make it a circle of radius R, so that traveling in that direction for a distance L = 2πR takes you around the circle and brings you back to where you started. A particle traveling around this circle will have a quantized
momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
around the circle, because its momentum is linked to its
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
(see
wave–particle duality
Wave–particle duality is the concept in quantum mechanics that fundamental entities of the universe, like photons and electrons, exhibit particle or wave (physics), wave properties according to the experimental circumstances. It expresses the in ...
), and 2πR must be a multiple of that. In fact, the particle momentum around the circle - and the contribution to its energy - is of the form n/R (in
standard units, for an integer n), so that at large R there will be many more states compared to small R (for a given maximum energy). A string, in addition to traveling around the circle, may also wrap around it. The number of times the string winds around the circle is called the
winding number
In mathematics, the winding number or winding index of a closed curve in the plane (mathematics), plane around a given point (mathematics), point is an integer representing the total number of times that the curve travels counterclockwise aroun ...
, and that is also quantized (as it must be an integer). Winding around the circle requires energy, because the string must be stretched against its tension, so it contributes an amount of energy of the form
, where
is a constant called the ''string length'' and w is the winding number (an integer). Now (for a given maximum energy) there will be many different states (with different momenta) at large R, but there will also be many different states (with different windings) at small R. In fact, a theory with large R and a theory with small R are equivalent, where the role of momentum in the first is played by the winding in the second, and vice versa. Mathematically, taking R to
and switching n and w will yield the same equations. So exchanging momentum and winding modes of the string exchanges a large distance scale with a small distance scale.
This type of duality is called
T-duality. T-duality relates
type IIA superstring theory to
type IIB superstring theory. That means if we take type IIA and Type IIB theory and compactify them both on a circle (one with a large radius and the other with a small radius) then switching the momentum and winding modes, and switching the distance scale, changes one theory into the other. The same is also true for the two heterotic theories. T-duality also relates
type I superstring theory to both type IIA and type IIB superstring theories with certain boundary conditions (termed
orientifold).
Formally, the location of the string on the circle is described by two fields living on it, one which is left-moving and another which is right-moving. The movement of the string center (and hence its momentum) is related to the sum of the fields, while the string stretch (and hence its winding number) is related to their difference. T-duality can be formally described by taking the left-moving field to minus itself, so that the sum and the difference are interchanged, leading to switching of momentum and winding.
S-duality
{{Main, S-duality, M-theory
Every
force
In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
has a
coupling constant
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between tw ...
, which is a measure of its strength, and determines the chances of one particle to emit or absorb another particle. For
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, the coupling constant is proportional to the square of the
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
. When physicists study the
quantum behavior of electromagnetism, they can't solve the whole theory exactly, because every particle may emit and absorb many other particles, which may also do the same, endlessly. So events of emission and absorption are considered as perturbations and are dealt with by a series of approximations, first assuming there is only one such event, then correcting the result for allowing two such events, etc. (this method is called
Perturbation theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
). This is a reasonable approximation only if the coupling constant is small, which is the case for electromagnetism. But if the coupling constant gets large, that method of calculation breaks down, and the little pieces become worthless as an approximation to the real physics.
This also can happen in string theory. String theories have a coupling constant. But unlike in particle theories, the string coupling constant is not just a number, but depends on one of the
oscillation
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
modes of the string, called the
dilaton
In particle physics, the hypothetical dilaton is a particle of a scalar field \varphi that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compa ...
. Exchanging the dilaton field with minus itself exchanges a very large coupling constant with a very small one. This symmetry is called
S-duality. If two string theories are related by S-duality, then one theory with a strong coupling constant is the same as the other theory with weak coupling constant. The theory with strong coupling cannot be understood by means of
perturbation theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
, but the theory with weak coupling can. So if the two theories are related by S-duality, then we just need to understand the weak theory, and that is equivalent to understanding the strong theory.
Superstring theories related by S-duality are:
type I superstring theory with
heterotic SO(32) superstring theory, and
type IIB theory with itself.
Furthermore,
type IIA theory in strong coupling behaves like an 11-dimensional theory, with the
dilaton
In particle physics, the hypothetical dilaton is a particle of a scalar field \varphi that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compa ...
field playing the role of an eleventh dimension. This 11-dimensional theory is known as
M-theory
In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1 ...
.
Unlike the T-duality, however, S-duality has not been proven to even a physics level of rigor for any of the aforementioned cases. It remains, strictly speaking, a conjecture, although most string theorists believe in its validity.
See also
*
Mirror symmetry
*
U-duality
String theory
References