Stratified Sampling
   HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, stratified sampling is a method of sampling from a
population Population is a set of humans or other organisms in a given region or area. Governments conduct a census to quantify the resident population size within a given jurisdiction. The term is also applied to non-human animals, microorganisms, and pl ...
which can be partitioned into
subpopulation In statistics, a population is a set of similar items or events which is of interest for some question or experiment. A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypo ...
s. In
statistical survey Survey methodology is "the study of survey methods". As a field of applied statistics concentrating on human-research surveys, survey methodology studies the sampling of individual units from a population and associated techniques of survey d ...
s, when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation (stratum) independently. Stratification is the process of dividing members of the population into homogeneous subgroups before sampling. The strata should define a partition of the population. That is, it should be ''
collectively exhaustive In probability theory and logic, a set of events is jointly or collectively exhaustive if at least one of the events must occur. For example, when rolling a six-sided die, the events 1, 2, 3, 4, 5, and 6 are collectively exhaustive, because th ...
'' and ''
mutually exclusive In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails ...
'': every element in the population must be assigned to one and only one stratum. Then sampling is done in each stratum, for example: by
simple random sampling In statistics, a simple random sample (or SRS) is a subset of individuals (a sample (statistics), sample) chosen from a larger Set (mathematics), set (a statistical population, population) in which a subset of individuals are chosen randomization, ...
. The objective is to improve the precision of the sample by reducing
sampling error In statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. Since the sample does not include all members of the population, statistics of the sample ...
. It can produce a
weighted mean The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The ...
that has less variability than the
arithmetic mean In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
of a
simple random sample In statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sa ...
of the population. In
computational statistics Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods. It is the area of computational ...
, stratified sampling is a method of
variance reduction In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. Every output random variable fr ...
when
Monte Carlo method Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be ...
s are used to estimate population statistics from a known population.


Example

Assume that we need to estimate the average number of votes for each candidate in an election. Assume that a country has 3 towns: Town A has 1 million factory workers, Town B has 2 million office workers and Town C has 3 million retirees. We can choose to get a random sample of size 60 over the entire population but there is some chance that the resulting random sample is poorly balanced across these towns and hence is biased, causing a significant error in estimation (when the outcome of interest has a different distribution, in terms of the parameter of interest, between the towns). Instead, if we choose to take a random sample of 10, 20 and 30 from Town A, B and C respectively, then we can produce a smaller error in estimation for the same total sample size. This method is generally used when a population is not a homogeneous group.


Strategies

#''Proportionate allocation'' uses a
sampling fraction In sampling theory, the sampling fraction is the ratio of sample size to population size or, in the context of stratified sampling, the ratio of the sample size to the size of the stratum. The formula for the sampling fraction is :f=\frac, wher ...
in each of the strata that are proportional to that of the total population. For instance, if the population consists of ''n'' total individuals, ''m'' of which are male and ''f'' female (and where ''m'' + ''f'' = ''n''), then the relative size of the two samples (''x''1 = ''m''/''n'' males, ''x''2 = ''f''/''n'' females) should reflect this proportion. #''Optimum allocation'' (or ''disproportionate allocation'') – The sampling fraction of each stratum is proportionate to both the proportion (as above) and the
standard deviation In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
of the distribution of the variable. Larger samples are taken in the strata with the greatest variability to generate the least possible overall sampling variance. Neyman allocation is a strategy of this type. A real-world example of using stratified sampling would be for a political survey. If the respondents needed to reflect the diversity of the population, the researcher would specifically seek to include participants of various minority groups such as race or religion, based on their proportionality to the total population as mentioned above. A stratified survey could thus claim to be more representative of the population than a survey of
simple random sampling In statistics, a simple random sample (or SRS) is a subset of individuals (a sample (statistics), sample) chosen from a larger Set (mathematics), set (a statistical population, population) in which a subset of individuals are chosen randomization, ...
or
systematic sampling In survey methodology, one-dimensional systematic sampling is a statistical method involving the selection of elements from an ordered sampling frame. The most common form of systematic sampling is an equiprobability method. This applies in parti ...
. Both mean and variance can be corrected for disproportionate sampling costs using stratified sample sizes.


Advantages

The reasons to use stratified sampling rather than
simple random sampling In statistics, a simple random sample (or SRS) is a subset of individuals (a sample (statistics), sample) chosen from a larger Set (mathematics), set (a statistical population, population) in which a subset of individuals are chosen randomization, ...
include # If measurements within strata have a lower standard deviation (as compared to the overall standard deviation in the population), stratification gives a smaller error in estimation. # For many applications, measurements become more manageable and/or cheaper when the population is grouped into strata. # When it is desirable to have estimates of the population
parameters A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
for groups within the population – stratified sampling verifies we have enough samples from the strata of interest. If the population density varies greatly within a region, stratified sampling will ensure that estimates can be made with equal accuracy in different parts of the region, and that comparisons of sub-regions can be made with equal
statistical power In frequentist statistics, power is the probability of detecting a given effect (if that effect actually exists) using a given test in a given context. In typical use, it is a function of the specific test that is used (including the choice of tes ...
. For example, in
Ontario Ontario is the southernmost Provinces and territories of Canada, province of Canada. Located in Central Canada, Ontario is the Population of Canada by province and territory, country's most populous province. As of the 2021 Canadian census, it ...
a survey taken throughout the province might use a larger sampling fraction in the less populated north, since the disparity in population between north and south is so great that a sampling fraction based on the provincial sample as a whole might result in the collection of only a handful of data from the north.


Disadvantages

It would be a misapplication of the technique to make subgroups' sample sizes proportional to the amount of data available from the subgroups, rather than scaling sample sizes to subgroup sizes (or to their variances, if known to vary significantly—e.g. using an
F test An F-test is a statistical test that compares variances. It is used to determine if the variances of two samples, or if the ratios of variances among multiple samples, are significantly different. The test calculates a statistic, represented by t ...
). Data representing each subgroup are taken to be of equal importance if suspected variation among them warrants stratified sampling. If subgroup variances differ significantly and the data needs to be stratified by variance, it is not possible to simultaneously make each subgroup sample size proportional to subgroup size within the total population. For an efficient way to partition sampling resources among groups that vary in their means, variance and costs, see "optimum allocation". The problem of stratified sampling in the case of unknown class priors (ratio of subpopulations in the entire population) can have a deleterious effect on the performance of any analysis on the dataset, e.g. classification. In that regard, minimax sampling ratio can be used to make the dataset robust with respect to uncertainty in the underlying data generating process. Combining sub-strata to ensure adequate numbers can lead to
Simpson's paradox Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-science st ...
, where trends that exist in different groups of data disappear or even reverse when the groups are combined.


Mean and standard error

The mean and variance of stratified random sampling are given by: :\bar = \frac \sum_^L N_h \bar_h :s_\bar^2 = \sum_^L \left(\frac\right)^2 \left(\frac\right)\frac where :L =number of strata :N =the sum of all stratum sizes :N_h =size of stratum h :\bar_h =sample mean of stratum h :n_h =number of observations in stratum h :s_h =sample standard deviation of stratum h Note that the term (N_h-n_h) / (N_h-1), which equals 1-\frac, is a
finite population correction The standard error (SE) of a statistic (usually an estimator of a parameter, like the average or mean) is the standard deviation of its sampling distribution or an estimate of that standard deviation. In other words, it is the standard deviation ...
and N_h must be expressed in "sample units". Forgoing the finite population correction gives: :s_\bar^2 = \sum_^L \left(\frac\right)^2 \frac where the w_h = N_h/N is the population weight of stratum h.


Sample size allocation

For the proportional allocation strategy, the size of the sample in each stratum is taken in proportion to the size of the stratum. Suppose that in a company there are the following staff: *male, full-time: 90 *male, part-time: 18 *female, full-time: 9 *female, part-time: 63 *total: 180 and we are asked to take a sample of 40 staff, stratified according to the above categories. The first step is to calculate the percentage of each group of the total. *% male, full-time = 90 ÷ 180 = 50% *% male, part-time = 18 ÷ 180 = 10% *% female, full-time = 9 ÷ 180 = 5% *% female, part-time = 63 ÷ 180 = 35% This tells us that of our sample of 40, *50% (20 individuals) should be male, full-time. *10% (4 individuals) should be male, part-time. *5% (2 individuals) should be female, full-time. *35% (14 individuals) should be female, part-time. Another easy way without having to calculate the percentage is to multiply each group size by the sample size and divide by the total population size (size of entire staff): * male, full-time = 90 × (40 ÷ 180) = 20 * male, part-time = 18 × (40 ÷ 180) = 4 * female, full-time = 9 × (40 ÷ 180) = 2 * female, part-time = 63 × (40 ÷ 180) = 14


See also

*
Opinion poll An opinion poll, often simply referred to as a survey or a poll, is a human research survey of public opinion from a particular sample. Opinion polls are usually designed to represent the opinions of a population by conducting a series of qu ...
*
Multistage sampling Multistage may refer to: * Armitage–Doll multistage model of carcinogenesis * Multistage amplifiers * Centrifugal pump, Multistage centrifugal pump * Multi-stage flash distillation * Multistage interconnection networks * Multistage rocket * Multi ...
*
Statistical benchmarking In statistics, benchmarking is a method of using auxiliary information to adjust the sampling weights used in an estimation process, in order to yield more accurate estimates of totals. Suppose we have a population where each unit k has a "value ...
* Stratified sample size *
Stratification (clinical trials) Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Stratified sampling , Data stratification in statistics Earth sciences * Stable and unstable stratification * S ...


References


Further reading

* {{DEFAULTSORT:Stratified Sampling Sampling (statistics) Sampling techniques Variance reduction