Evolution
Due to their extreme habitats, stomiids are very rare in theGenera
Habitat
The family ''Stomiidae'' can be found in all oceans. They also exist at a wide range of depths between the surface and thousands of meters deep into theFeatures
It is one of the many species of deep-sea fish that can produce their own light through a chemical process known asSexual Dimorphic Features
Throughout their developmental life, the Stomiidae family exhibits a wide degree of sexual dimorphism. Female adult Stomiidae are much larger than the males. Some male species of Stomiidae like Idiacanthinae also lack teeth, a chin barbel, a functional gut, and pelvic fins in their larval stages in contrast to their female larval counterparts. Additionally, a significant visual detection gap exists between males and females. Males have larger eyes and lenses that contain more photophores than females. Thus, an increase in photophores enables males to detect female organisms at a greater distance than females can detect males.Jaw morphology of Adults and Larvae
The jaw of members in the Stomiidae family is adapted extremely well for survival and predation in the deep sea. Although small in size, the dragonfish jaw is adapted to capture large prey that are up to 50% the body mass of themselves. The long "loosejaw" of the dragonfish exhibits increased resistive forces to lower jaw adduction compared to fish with shorter jaws; however, due to decreased surface area of the lower jaw, dragonfish are able to lower the mechanical advantage of adduction and increase adduction velocity through the reduction of resistive forces. Additionally, it is seen that the adductor mass of the lower jaw of deep-sea dragonfish is significantly decreased, allowing for increased ability to attain high adduction velocity. This makes the deep-sea dragonfish significantly more competitive when hunting for prey due to its ability to capture large prey quickly and efficiently. An important distinction in jaw morphology between an adult dragonfish and its larvae are the shape of the mouth. The adult fish have an elongated snout-like face with a protruding jaw, while the larvae have a rounder shaped mouth and a lower jaw that does not protrude. Additionally, members of this family have a unique head joint that contribute to its ability to open its 'loosejaw' so wide. Deep-sea dragonfish have a flexible connection between the base of the skull and first vertebrae called the occipito-vertebral gap where only the flexible notochord is present. In some taxa the first to tenth anterior vertebrae are reduced or entirely absent. This gap is the result of notochord elongation in this specific area. Functionally, the gap allows deep-sea dragonfish to pull back their cranium and open their mouths up to 120°, which is significantly farther than other taxa that lack such a head joint. This is what allows deep-sea dragonfish to engulf such large prey, resulting in improved survival through the ability to consume more organisms in an extremely food limited environment. On top of an extremely well adapted jaw, members of the Stomiidae family also have teeth that are adapted for hunting in deep sea. Their teeth are sharp, hard, stiff, and transparent when wet, making their teeth dangerous weapons as these teeth become basically invisible in the light absent deep sea. This means the refraction index of their teeth is nearly identical to that of the sea water they inhabit. The transparency is due to a nanoscale structure of hydroxyapatite and collagen, while the tips of the transparent teeth of deep-sea dragonfish were found to emit more red light in seawater which further contributes to its transparency as red light is close to invisible at the depths that the deep-sea dragonfish reside due to a lack of light penetration.Evolution of sensory organs
The deep-sea dragonfishes are part of the stomiidae family, making up a clade of 28 genera and 290 species. The dragonfish possess unique adaptations to help them thrive in the deepest parts of the ocean. This family species have been discovered to use certain long-wave and short-wave bioluminescence to communicate, lure prey, distract predators, and camouflage themselves. The stomiidae family has many unique adaptations to their sensory organs for the deep sea. Most deep-sea organisms have only a single visual pigment sensitive to the absorbance ranges of 470–490 nm. This type of optical system is commonly found in the stomiidae family. However, three genera of dragonfish evolved the ability to produce both long-wave and short-wave bioluminescence. In addition, deep-sea dragon fishes evolved retinas with far-red emitting photophores and rhodopsins. These far-red emitting properties produce long-wave bioluminescence greater than 650 nm. This unique evolutionary trait was first seen around 15.4 Ma and had a single evolutionary origin within the stomiidae family.Reproductive features
Dragonfish females exhibit two distinct cohorts oocytes, one which is a white cream color during the first growing stage and the other which is orange-reddish in vitellogenesis. The orange-reddish ovaries are released in the current spawning season, while the other batch is in the growing stage. Stomiids are gonochoristic, allowing them to increase their reproductive fitness by using their energy to produce gametes instead of reconfiguring the reproductive system. The female adult stomiids are also larger than the males.Behavior
Dragonfish are a type of teleost fish that inhabit the deep sea and use bioluminescence to detect prey and communicate with potential mates. They possess far-red emitting photophores and rhodopsins that are sensitive to long-wave emissions greater than 650 nm, and have adapted to the unique light conditions of the deep-sea environment.Reproductive behavior
Egg-laying, which predominantly occurs in October, is preceded by a distinctive whirling behavior driven by the male prodding the side of the female's abdomen. Additionally, dragonfish possess a unique adaptation of being able to see using chlorophyll in their eyes, which may allow them to detect the weak bioluminescence of their prey and navigate their dark habitats more effectively. This research sheds light on the reproductive behavior and early life stages of the naked dragonfish and contributes to our understanding of the ecology and behavior of dragonfish species.Evolution and adaptations of the visual system
One study focuses on the stomiid family, which includes loosejaws and dragonfishes, analyzing the genetic makeup of the visual pigments in these fish and how they have adapted to the unique light conditions of the deep-sea environment. The research helps us understand how dragonfish behavior and vision have evolved to allow them to thrive in the deep sea. Dragonfish use far-red emitting photophores and rhodopsins to detect prey and navigate their habitats. Additionally, dragonfish use chlorophyll in their eyes to detect the weak bioluminescence of their prey, which is an unusual adaptation for a vertebrate.Visual communication and behavior
Teleost fishes exhibit a wide range of visual signals, including color, texture, form, and motion, that are used to find mates, establish dominance, defend territory, and coordinate group behavior. Dragonfish have specialized bioluminescent organs that produce red light to communicate with potential mates and prey. Understanding the visual communication and behavior of teleost fishes is essential to understanding the behavior of dragonfish in their natural habitats.Feeding Behavior
One specific species from the Stomiidae family, ''Malacosteus niger,'' was studied to investigate more about the trophic ecology of this species and perhaps reveal more about the family as a whole. This species, similar to many of the other species in this family, has large fangs, jaws, and other physiological traits that would suggest predation of larger animals. Studies of specimens from the North Atlantic, Gulf of Mexico, and throughout the Pacific suggest feeding habits contrary to this hypothesis: the majority of the prey numbers were large calanoid copepods, roughly between 65% to 80%, and prey biomass roughly between 10% to 45%. Indeed, other species from this family prey on larger animals, ''M. niger'' being no exception. In fact, of the Stomiidae family, ''M. niger'' appears to be the most fit for larger prey, as indicated by its feeding morphology.Bioluminescence in Stomiidae
Dragonfish of the Stomiidae family are largely characterized by theirLure bioluminescence
Species of the Stomiidae family use blue bioluminescence for communication, camouflage, and as a luring mechanism. They emit shortwave blue bioluminescence from postorbital photophores and from a long, slender appendage on the chin, called the barbel. The shaft of the barbel is composed of cylindrical muscles, blood vessels and nervous fibers, and the bulb of the barbel has a single photophore. The catecholamine adrenaline is found in the connective tissue within the stem. One hypothesis regarding barbel control is that adrenaline innervation may control both the movement of the barbel and its production of bioluminescence. Data from a study performed on specimens of the ''Stomias boa'' species agree with this hypothesis because the barbels of the dragonfish produced light emissions following exposure to external adrenaline. The loose jaw dragonfishes, which include species from '' Aristostomias'', '' Malacosteus'', and '' Pachystomias'', have the ability to detect and produce red bioluminescence. This is made possible by far-red emitting photophores located under the eye and rhodopsins that are sensitive to long-wave emissions. This red bioluminescence is used to illuminate prey and to detect other far-red dragonfishes, because it goes undetected by most other species. The species with far-red emitting photophores differ in morphology and behavior from most other dragonfish species. For example, the barbels of these species are more simple in structure than those of other dragonfishes. They also differ in foraging strategies. While most dragonfishes that produce shortwave blue bioluminescence undergo regular diel vertical migrations, this is not seen in those with far-red emissions. The foraging strategy they undergo involves remaining in the deep-sea and emitting far-red bioluminescence to illuminate a small area and search for prey. Although ''Malacosteus, Pachystomias'', and ''Aristostomias'' all have suborbital photophores that produce red bioluminescence, there are differences in the suborbital photophores between these three genera, in their shape, color, flash duration, and maximum emission.References
External links