HOME

TheInfoList



OR:

Stochastic electrodynamics (SED) is a variant of classical electrodynamics (CED) of theoretical physics. SED consists of a set of controversial theories that posit the existence of a classical Lorentz invariant
radiation field In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visib ...
having
statistical Statistics (from German: ''Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industria ...
properties similar to that of the electromagnetic
zero-point field In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used as ...
(ZPF) of quantum electrodynamics (QED).


Classical background field

The background field is introduced as a
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
in the (classical) Abraham–Lorentz–Dirac equation (see: Abraham–Lorentz–Dirac force), where the classical statistics of the electric and magnetic fields and quadratic combinations thereof are chosen to match the vacuum expectation values of the equivalent operators in QED. The field is generally represented as a discrete sum of Fourier components each with amplitude and phase that are independent classical random variables, distributed so that the statistics of the fields are isotropic and unchanged under boosts. This prescription is such that each Fourier mode at frequency (f) is expected to have an energy of hf/2, equaling that of the ground state of the vacuum modes of QED. Unless cut off, the total field has an infinite energy density, with a spectral energy density (per unit frequency per unit volume) h/c33 where h is Planck's constant. Consequently, the background field is a classical version of the electromagnetic ZPF of QED, though in SED literature the field is commonly referred to simply as 'the ZPF' without making that distinction. Any finite cutoff frequency of the field itself would be incompatible with Lorentz invariance. For this reason, some researchers prefer to think of cutoff frequency in terms of the response of particles to the field rather than as a property of the field itself.


Brief history

Stochastic electrodynamics is a term for a collection of research efforts of many different styles based on the ansatz that there exists a Lorentz invariant random electromagnetic radiation. The basic ideas have been around for a long time; but Marshall (1963) and Brafford seem to have been the originators of the more concentrated efforts starting in the 1960s. Thereafter Timothy Boyer,
Luis de la Peña Luis Fernando de la Peña-Auerbach known as Luis de la Peña is a Mexican physicist, born in Mexico City in 1931. He is a researcher of the Institute of Physics and professor of the Faculty of Sciences of the National Autonomous University of M ...
and
Ana María Cetto Ana María Cetto Kramis (born 1946, in Mexico City) is a Mexican physicist and professor. She is known for her contributions to quantum mechanics, stochastic, electrodynamics, and biophysics of light, and for her work as a pacifist. From 2003 ...
were perhaps the most prolific contributors in the 1970s and beyond. Others have made contributions, alterations and proposals concentrating on the application of SED to problems in QED. A separate thread has been the investigation of an earlier proposal by
Walther Nernst Walther Hermann Nernst (; 25 June 1864 – 18 November 1941) was a German chemist known for his work in thermodynamics, physical chemistry, electrochemistry, and solid state physics. His formulation of the Nernst heat theorem helped pave the wa ...
attempting to use the SED notion of a classical ZPF to explain ''inertial mass'' as due to a vacuum reaction. In 2010, Cavalleri ''et al.'' introduced SEDS ('pure' SED, as they call it, plus spin) as a fundamental improvement which they claim potentially overcomes all the known drawbacks to SED. They also claim SEDS resolves four observed effects that are so far unexplained by QED, i.e., 1) the physical origin of the ZPF, and its natural upper cutoff; 2) an anomaly in experimental studies of the neutrino rest mass; 3) the origin and quantitative treatment of 1/f noise; and 4) the high-energy tail (~ 1021 eV) of cosmic rays. Two
double-slit In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanica ...
electron diffraction experiments are proposed to discriminate between QM and SEDS. In 2013 Auñon et al. showed that Casimir and Van der Waals interactions are a particular case of stochastic forces from electromagnetic sources when the broad Planck's spectrum is chosen and the wavefields are non-correlated. Addressing fluctuating partially coherent light emitters with a tailored spectral energy distribution in the optical range, this establishes the link between stochastic electrodynamics and coherence theory; henceforth putting forward a way to optically create and control both such zero-point fields as well as Lifshitz forces of thermal fluctuations. In addition, this opens the path to build many more stochastic forces on employing narrow-band light sources for bodies with frequency-dependent responses. In a 2014 dissertation Carlos Alberto de Oliveira Henriques measured the energy shift in the atomic levels of Xe atoms as they passed through nano-porous Casimir membranes. Some evidence of anomalous radiation were observed, however, he was not able to distinguish this radiation conclusively from the background due to said shortcomings in the detector. A follow up study detected anomalous radiation and was able to either eliminate various alternative sources of energy as an explanation or show that they were unlikely. The amount of radiation detected, however, was lower than expected.


Scope of SED

SED has been used in attempts to provide a ''classical'' explanation for effects previously considered to require quantum mechanics (here restricted to the Schrödinger equation and the Dirac equation and QED) for their explanation. It has also been used to motivate a classical ZPF-based underpinning for gravity and inertia. There is no universal agreement on the successes and failures of SED, either in its congruence with standard theories of quantum mechanics, QED, and gravity, or in its compliance with observation. The following SED-based explanations are relatively uncontroversial and are free of criticism at the time of writing: *The Casimir effect *The Van der Waals force * Diamagnetism *The
Unruh effect The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe ...
The following SED-based calculations and SED-related claims are more controversial and some have been subject to published criticism: *The ground state of the
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \v ...
*The ground state of the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen consti ...
*
De Broglie waves Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a wate ...
* Inertia *
Gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
* Non-locality and tests of Bell's theorem


Zero point energy

According to Haisch and Rueda, inertia arises as an ''electromagnetic drag force'' on accelerating particles, produced by interaction with the zero-point field. In their 1998 Ann. Phys. paper (see citations), they speak of a "Rindler flux", presumably meaning the Unruh effect, and claim to have computed a nonzero ''"z.p.f. momentum"''. This computation rests upon their claim to compute a nonzero ''"z.p.f. Poynting vector"''. These proposals for zero-point energy suggest a source of low or no cost free energy from the vacuum as well as the hope of developing a reactionless drive. NASA continues to make assessments: In the usual interpretation of vacuum energy it is not possible to use it to do work. However, SED takes a rather more literal, classical interpretation, and views the very high energy density of the electromagnetic vacuum as propagating waves, which must necessarily carry considerable energy and momentum flux, ordinarily not evident in the absence of matter, because the flux is
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
.


Fictional references

Arthur C. Clarke describes a "SHARP drive" (for Sakharov, Haisch, Rueda and Puthoff) in his 1997 novel " 3001: The Final Odyssey".


See also

* Stochastic quantum mechanics


References


Further reading

* *
on-line version
fro
Haisch's website
*
physics/9802030
*
gr-qc/0504061


External links



a physics organization founded by
Bernard Haisch Bernard Haisch is a German-born American astrophysicist who has done research in solar-stellar astrophysics and stochastic electrodynamics. He has developed with Alfonso Rueda a speculative theory that the non-zero lowest energy state of the vacu ...
* H. E. Puthoff
Quantum Vacuum Fluctuations: A New Rosetta Stone of Physics?
* H. E. Puthoff

{{DEFAULTSORT:Stochastic Electrodynamics Fringe physics Quantum field theory Emergence