
In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the Steiner ellipse of a
triangle
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
is the unique
circumellipse (an
ellipse
In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
that touches the triangle at its
vertices) whose center is the triangle's
centroid
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the figure. The same definition extends to any object in n-d ...
.
It is also called the Steiner circumellipse, to distinguish it from the
Steiner inellipse. Named after
Jakob Steiner
Jakob Steiner (18 March 1796 – 1 April 1863) was a Swiss mathematician who worked primarily in geometry.
Life
Steiner was born in the village of Utzenstorf, Canton of Bern. At 18, he became a pupil of Heinrich Pestalozzi and afterwards st ...
, it is an example of a
circumconic. By comparison the
circumcircle
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertex (geometry), vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumrad ...
of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is
equilateral
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
.
The area of the Steiner ellipse equals the area of the triangle times
and hence is 4 times the area of the Steiner inellipse. The Steiner ellipse has the least area of any ellipse circumscribed about the triangle.
[
The Steiner ellipse is the scaled Steiner inellipse (factor 2, center is the centroid). Hence both ellipses are similar (have the same ]eccentricity
Eccentricity or eccentric may refer to:
* Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal"
Mathematics, science and technology Mathematics
* Off-Centre (geometry), center, in geometry
* Eccentricity (g ...
).
Properties
* A Steiner ellipse is the only ellipse, whose center is the centroid of a triangle and contains the points . The area of the Steiner ellipse is -fold of the triangle's area.
;Proof:
A) For an equilateral triangle the Steiner ellipse is the circumcircle
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertex (geometry), vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumrad ...
, which is the only ellipse, that fulfills the preconditions. The desired ellipse has to contain the triangle reflected at the center of the ellipse. This is true for the circumcircle. A conic
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, thou ...
is uniquely determined by 5 points. Hence the circumcircle is the only Steiner ellipse.
B) Because an arbitrary triangle is the affine image of an equilateral triangle, an ellipse is the affine image of the unit circle and the centroid of a triangle is mapped onto the centroid of the image triangle, the property (a unique circumellipse with the centroid as center) is true for any triangle.
The area of the circumcircle of an equilateral triangle is -fold of the area of the triangle. An affine map preserves the ratio of areas. Hence the statement on the ratio is true for any triangle and its Steiner ellipse.
Determination of conjugate points
An ellipse can be drawn (by computer or by hand), if besides the center at least two conjugate points on conjugate diameters are known. In this case
* ''either'' one determines by Rytz's construction the vertices of the ellipse and draws the ellipse with a suitable ellipse compass
*''or'' uses an parametric representation for drawing the ellipse.
Let be a triangle and its centroid . The shear mapping with axis through and parallel to transforms the triangle onto the isosceles triangle (see diagram). Point is a vertex of the Steiner ellipse of triangle . A second vertex of this ellipse lies on , because is perpendicular to (symmetry reasons). This vertex can be determined from the data (ellipse with center through and , ) by ''calculation''. It turns out that
:
Or by ''drawing'': Using de la Hire's method (see center diagram) vertex of the Steiner ellipse of the isosceles triangle is determined.
The inverse shear mapping maps back to and point is fixed, because it is a point on the shear axis. Hence semi diameter is conjugate to .
With help of this pair of conjugate semi diameters the ellipse can be drawn, by hand or by computer.
Parametric representation and equation
Given: Triangle
Wanted: Parametric representation and equation of its Steiner ellipse
The centroid of the triangle is
Parametric representation:
From the investigation of the previous section one gets the following parametric representation of the Steiner ellipse:
*
* The four vertices of the ellipse are where comes from with (see ellipse
In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
).
The roles of the points for determining the parametric representation can be changed.
''Example'' (see diagram): .
Equation:
If the origin is the centroid of the triangle (center of the Steiner ellipse) the equation corresponding to the parametric representation is
*
with .CDKG: Computerunterstützte Darstellende und Konstruktive Geometrie (TU Darmstadt)
(PDF; 3,4 MB), p. 65.
''Example:''
The centroid of triangle
is the origin. From the vectors
one gets the equation of the Steiner ellipse:
:
Determination of the semi-axes and linear eccentricity
If the vertices are already known (see above), the semi axes can be determined. If one is interested in the axes and eccentricity only, the following method is more appropriate:
Let be
the semi axes of the Steiner ellipse. From
Apollonios theorem on properties of conjugate semi diameters of ellipses one gets:
:
Denoting the right hand sides of the equations by
and
respectively and transforming the non linear system (respecting
) leads to:
:
:
Solving for
and
one gets the semi axes:
*
with
.
The linear eccentricity of the Steiner ellipse is
*
and the area
One should not confuse
in this section with other meanings in this article !
Trilinear equation
The equation of the Steiner circumellipse in
trilinear coordinates
In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is ...
is
[
:
for side lengths ''a, b, c''.
]
Alternative calculation of the semi axes and linear eccentricity
The semi-major and semi-minor axes (of a triangle with sides of length a, b, c) have lengths[
:
and focal length
:
where
:
The foci are called the ']
Bickart points
'' of the triangle.
See also
* Triangle conic
References
* Georg Glaeser, Hellmuth Stachel, Boris Odehnal: ''The Universe of Conics'', Springer 2016, {{ISBN, 978-3-662-45449-7, p.383
Curves defined for a triangle
Affine geometry
Ellipses