HOME

TheInfoList



OR:

The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by or , is the nominal
gravitational acceleration In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag (physics), drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodi ...
of an object in a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
near the surface of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. It is a constant defined by standard as . This value was established by the third General Conference on Weights and Measures (1901, CR 70) and used to define the standard
weight In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. Some sta ...
of an object as the product of its mass and this nominal
acceleration In mechanics, acceleration is the Rate (mathematics), rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are Euclidean vector, vector ...
. The acceleration of a body near the surface of the Earth is due to the combined effects of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
and
centrifugal acceleration Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the
poles Pole or poles may refer to: People *Poles (people), another term for Polish people, from the country of Poland * Pole (surname), including a list of people with the name * Pole (musician) (Stefan Betke, born 1967), German electronic music artist ...
than at the
Equator The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
. Although the symbol is sometimes used for standard gravity, (without a suffix) can also mean the local acceleration due to local gravity and centrifugal acceleration, which varies depending on one's position on Earth (see
Earth's gravity The gravity of Earth, denoted by , is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector qu ...
). The symbol should not be confused with , the gravitational constant, or g, the symbol for
gram The gram (originally gramme; SI unit symbol g) is a Physical unit, unit of mass in the International System of Units (SI) equal to one thousandth of a kilogram. Originally defined in 1795 as "the absolute Mass versus weight, weight of a volume ...
. The is also used as a unit for any form of acceleration, with the value defined as above. The value of defined above is a nominal midrange value on Earth, originally based on the acceleration of a body in free fall at sea level at a geodetic latitude of 45°. Although the actual acceleration of free fall on Earth varies according to location, the above standard figure is always used for metrological purposes. In particular, since it is the ratio of the
kilogram-force The kilogram-force (kgf or kgF), or kilopond (kp, from ), is a non-standard Gravitational metric system, gravitational metric unit of force. It is not accepted for use with the International System of Units (SI) and is deprecated for most uses. T ...
and the
kilogram The kilogram (also spelled kilogramme) is the base unit of mass in the International System of Units (SI), equal to one thousand grams. It has the unit symbol kg. The word "kilogram" is formed from the combination of the metric prefix kilo- (m ...
, its numeric value when expressed in coherent SI units is the ratio of the kilogram-force and the newton, two units of force.


History

Already in the early days of its existence, the International Committee for Weights and Measures (CIPM) proceeded to define a standard thermometric scale, using the
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
of water. Since the boiling point varies with the
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
, the CIPM needed to define a standard atmospheric pressure. The definition they chose was based on the weight of a column of mercury of 760 mm. But since that weight depends on the local gravity, they now also needed a standard gravity. The 1887 CIPM meeting decided as follows: All that was needed to obtain a numerical value for standard gravity was now to measure the gravitational strength at the International Bureau. This task was given to Gilbert Étienne Defforges of the Geographic Service of the French Army. The value he found, based on measurements taken in March and April 1888, was 9.80991(5) m⋅s−2. This result formed the basis for determining the value still used today for standard gravity. The third General Conference on Weights and Measures, held in 1901, adopted a resolution declaring as follows: The numeric value adopted for was, in accordance with the 1887 CIPM declaration, obtained by dividing Defforges's result – 980.991 cm⋅s−2 in the cgs system then ''en vogue'' – by 1.0003322 while not taking more digits than are warranted considering the uncertainty in the result.


Conversions


See also

*
Gravity of Earth The gravity of Earth, denoted by , is the net force, net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a Eucl ...
* Gravity map *
Seconds pendulum A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing, a frequency of 0.5 Hz. Principles A pendulum is a weight suspended from a pivot so tha ...
* Theoretical gravity


References

{{reflist Physical quantities Gravity Units of acceleration Constants