Stallings–Zeeman Theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Stallings–Zeeman theorem is a result in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, used in the proof of the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
for
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
greater than or equal to five. It is named after the
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
s John R. Stallings and
Christopher Zeeman Sir Erik Christopher Zeeman FRS (4 February 1925 – 13 February 2016), was a British mathematician, known for his work in geometric topology and singularity theory. Overview Zeeman's main contributions to mathematics were in topology, partic ...
.


Statement of the theorem

Let ''M'' be a finite
simplicial complex In mathematics, a simplicial complex is a structured Set (mathematics), set composed of Point (geometry), points, line segments, triangles, and their ''n''-dimensional counterparts, called Simplex, simplices, such that all the faces and intersec ...
of dimension dim(''M'') = ''m'' ≥ 5. Suppose that ''M'' has the
homotopy type In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A ...
of the ''m''-dimensional
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
S''m'' and that ''M'' is locally piecewise linearly
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to ''m''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
R''m''. Then ''M'' is homeomorphic to S''m'' under a map that is piecewise linear except possibly at a single point ''x''. That is, ''M'' \  is piecewise linearly homeomorphic to R''m''.


References

* * {{DEFAULTSORT:Stallings-Zeeman theorem Theorems in algebraic topology