HOME

TheInfoList



OR:

The Staebler–Wronski Effect (SWE) refers to light-induced metastable changes in the properties of hydrogenated amorphous silicon. The defect density of hydrogenated amorphous silicon (a-Si:H) increases with light exposure, causing an increase in the recombination current and reducing the efficiency of the conversion of
sunlight Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when t ...
into
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
. It was discovered by David L. Staebler and Christopher R. Wronski in 1977. They showed that the dark current and photoconductivity of hydrogenated amorphous silicon can be reduced significantly by prolonged illumination with intense light. However, on heating the samples to above 150 °C, they could reverse the effect.


Explanation


Some experimental results

* Photoconductivity and dark conductivity decrease rapidly at first before stabilizing at a lower value. * Interruptions in the illumination has no effect on the subsequent rate of change. Once the sample is illuminated again, the photoconductivity will drop as though there was no interruption.


Suggested explanations

The exact nature and cause of the Staebler–Wronski effect is still not well known. Nanocrystalline silicon suffers less from the Staebler–Wronski effect than amorphous silicon, suggesting that the disorder in the amorphous silicon Si network plays a major role. Other properties that could play a role are hydrogen concentration and its complex bonding mechanism, as well as the concentration of impurities. Historically, the most favored model has been the hydrogen bond switching model. It proposes that an electron-hole pair formed by the incident light may recombine near a weak Si–Si bond, releasing energy suf