In
mathematics, the square lattice is a type of
lattice in a two-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
. It is the two-dimensional version of the
integer lattice, denoted as . It is one of the five types of two-dimensional lattices as classified by their
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
s; its symmetry group in
IUC notation as ,
Coxeter notation as , and
orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advant ...
as .
Two orientations of an image of the lattice are by far the most common. They can conveniently be referred to as the upright square lattice and diagonal square lattice; the latter is also called the centered square lattice.
[.] They differ by an angle of 45°. This is related to the fact that a square lattice can be partitioned into two square sub-lattices, as is evident in the colouring of a
checkerboard
A checkerboard (American English) or chequerboard (British English; see spelling differences) is a board of checkered pattern on which checkers (also known as English draughts) is played. Most commonly, it consists of 64 squares (8×8) of altern ...
.
Symmetry
The square lattice's
symmetry category is
wallpaper group
A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformat ...
. A pattern with this lattice of
translational symmetry
In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by .
In physics and mathematics, continuous translational symmetry is the invariance of a system of equatio ...
cannot have more, but may have less symmetry than the lattice itself.
An upright square lattice can be viewed as a diagonal square lattice with a mesh size that is √2 times as large, with the centers of the squares added. Correspondingly, after adding the centers of the squares of an upright square lattice one obtains a diagonal square lattice with a mesh size that is √2 times as small as that of the original lattice.
A pattern with 4-fold
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
has a square lattice of 4-fold rotocenters that is a factor √2 finer and diagonally oriented relative to the lattice of
translational symmetry
In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by .
In physics and mathematics, continuous translational symmetry is the invariance of a system of equatio ...
.
With respect to
reflection axes there are three possibilities:
*None. This is wallpaper group .
*In four directions. This is wallpaper group .
*In two
perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
directions. This is wallpaper group . The points of intersection of the reflexion axes form a square grid which is as fine as, and oriented the same as, the square lattice of 4-fold rotocenters, with these rotocenters at the centers of the squares formed by the reflection axes.
Crystal classes
The ''square lattice'' class names,
Schönflies notation The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe th ...
,
Hermann-Mauguin notation,
orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advant ...
,
Coxeter notation, and
wallpaper groups
A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformat ...
are listed in the table below.
See also
*
Centered square number
In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each c ...
*
Euclid's orchard
*
Gaussian integer
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
*
Hexagonal lattice
*
Quincunx
A quincunx () is a geometric pattern consisting of five points arranged in a cross, with four of them forming a square or rectangle and a fifth at its center. The same pattern has other names, including "in saltire" or "in cross" in heraldry (de ...
*
Square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
References
{{DEFAULTSORT:Square Lattice
Euclidean geometry
Lattice points
Crystal systems