HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a spherical conic or sphero-conic is a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
on the
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
(
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
,
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
, or
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose
great-circle distance The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the ...
s to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors. Many theorems about conics in the plane extend to spherical conics. For example, Graves's theorem and Ivory's theorem about confocal conics can also be proven on the sphere; see
confocal conic sections In geometry, two conic sections are called confocal if they have the same Focus (geometry), foci. Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. I ...
about the planar versions. Just as the arc length of an ellipse is given by an incomplete
elliptic integral In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising i ...
of the second kind, the arc length of a spherical conic is given by an incomplete elliptic integral of the third kind. An
orthogonal coordinate system In mathematics, orthogonal coordinates are defined as a set of coordinates \mathbf q = (q^1, q^2, \dots, q^d) in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate sur ...
in Euclidean space based on concentric spheres and quadratic cones is called a conical or sphero-conical coordinate system. When restricted to the surface of a sphere, the remaining coordinates are confocal spherical conics. Sometimes this is called an elliptic coordinate system on the sphere, by analogy to a planar elliptic coordinate system. Such coordinates can be used in the computation of conformal maps from the sphere to the plane.


Applications

The solution of the
Kepler problem In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force that varies in strength as the inverse square of the distance between them. The force may be either attra ...
in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance. Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of confocal ellipses and hyperbolae in the plane. If a portion of the Earth is modeled as spherical, e.g. using the osculating sphere at a point on an ellipsoid of revolution, the hyperbolae used in
hyperbolic navigation Hyperbolic navigation is a class of radio navigation systems in which a navigation receiver instrument is used to determine location based on the difference in timing of radio waves received from radio navigation beacon transmitters. Such syste ...
(which determines position based on the difference in received signal timing from fixed radio transmitters) are spherical conics.


Notes


Further reading

* English edition:
*
Republished in
''Journal de mathématiques pures et appliquées''. Ser. 2. 5: 425-454
PDF from mathdoc.fr
* * * * * * {{bots, deny=Citation bot Conic sections Spherical curves Spherical geometry Euclidean solid geometry Algebraic curves Analytic geometry