HOME

TheInfoList



OR:

An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
over a specific portion of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
, typically used in spectroscopic analysis to identify materials. The variable measured is most often the irradiance of the light but could also, for instance, be the polarization state. The independent variable is usually the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of the light or a closely derived physical quantity, such as the corresponding
wavenumber In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of ...
or the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
energy, in units of measurement such as centimeters, reciprocal centimeters, or electron volts, respectively. A spectrometer is used in
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
for producing
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
s and measuring their
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
s and intensities. Spectrometers may operate over a wide range of non-optical wavelengths, from
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s and
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s into the far infrared. If the instrument is designed to measure the spectrum on an absolute scale rather than a relative one, then it is typically called a spectrophotometer. The majority of spectrophotometers are used in spectral regions near the visible spectrum. A spectrometer that is calibrated for measurement of the incident optical power is called a spectroradiometer. In general, any particular instrument will operate over a small portion of this total range because of the different techniques used to measure different portions of the spectrum. Below optical frequencies (that is, at
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
and
radio Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
frequencies), the spectrum analyzer is a closely related electronic device. Spectrometers are used in many fields. For example, they are used in astronomy to analyze the radiation from objects and deduce their chemical composition. The spectrometer uses a prism or a grating to spread the light into a spectrum. This allows astronomers to detect many of the chemical elements by their characteristic spectral lines. These lines are named for the elements which cause them, such as the hydrogen alpha, beta, and gamma lines. A glowing object will show bright spectral lines. Dark lines are made by absorption, for example by light passing through a gas cloud, and these absorption lines can also identify chemical compounds. Much of our knowledge of the chemical makeup of the universe comes from spectra.


Spectroscopes

Spectroscopes are often used in
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
and some branches of
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
. Early spectroscopes were simply prisms with graduations marking wavelengths of light. Modern spectroscopes generally use a
diffraction grating In optics, a diffraction grating is an optical grating with a periodic structure that diffraction, diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions (i.e., different diffractio ...
, a movable slit, and some kind of
photodetector Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical ...
, all automated and controlled by a
computer A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
. Recent advances have seen increasing reliance of computational algorithms in a range of miniaturised spectrometers without diffraction gratings, for example, through the use of quantum dot-based filter arrays on to a CCD chip or a series of photodetectors realised on a single nanostructure. Joseph von Fraunhofer developed the first modern spectroscope by combining a prism, diffraction slit and
telescope A telescope is a device used to observe distant objects by their emission, Absorption (electromagnetic radiation), absorption, or Reflection (physics), reflection of electromagnetic radiation. Originally, it was an optical instrument using len ...
in a manner that increased the spectral resolution and was reproducible in other laboratories. Fraunhofer also went on to invent the first diffraction spectroscope. Gustav Robert Kirchhoff and Robert Bunsen discovered the application of spectroscopes to chemical analysis and used this approach to discover
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
and rubidium. Kirchhoff and Bunsen's analysis also enabled a chemical explanation of stellar spectra, including Fraunhofer lines. When a material is heated to
incandescence Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electron ...
it emits
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
that is characteristic of the atomic makeup of the material. Particular light frequencies give rise to sharply defined bands on the scale which can be thought of as fingerprints. For example, the element
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
has a very characteristic double yellow band known as the Sodium D-lines at 588.9950 and 589.5924 nanometers, the color of which will be familiar to anyone who has seen a low pressure sodium vapor lamp. In the original spectroscope design in the early 19th century, light entered a slit and a collimating lens transformed the light into a thin beam of parallel rays. The light then passed through a prism (in hand-held spectroscopes, usually an Amici prism) that refracted the beam into a spectrum because different wavelengths were refracted different amounts due to dispersion. This image was then viewed through a tube with a scale that was transposed upon the spectral image, enabling its direct measurement. With the development of
photographic film Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin photographic emulsion, emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the ...
, the more accurate spectrograph was created. It was based on the same principle as the spectroscope, but it had a camera in place of the viewing tube. In recent years, the electronic circuits built around the photomultiplier tube have replaced the camera, allowing real-time spectrographic analysis with far greater accuracy. Arrays of photosensors are also used in place of film in spectrographic systems. Such spectral analysis, or spectroscopy, has become an important scientific tool for analyzing the composition of unknown material and for studying astronomical phenomena and testing astronomical theories. In modern spectrographs in the UV, visible, and near-IR spectral ranges, the spectrum is generally given in the form of photon number per unit wavelength (nm or μm), wavenumber (μm−1, cm−1), frequency (THz), or energy (eV), with the units indicated by the abscissa. In the mid- to far-IR, spectra are typically expressed in units of Watts per unit wavelength (μm) or wavenumber (cm−1). In many cases, the spectrum is displayed with the units left implied (such as "digital counts" per spectral channel).


In Gemology

Gemologists frequently use spectroscopes to determine the absorption spectra of gemstones, thereby allowing them to make inferences about what kind of gem they are examining. A gemologist may compare the absorption spectrum they observe with a catalogue of spectra for various gems to help narrow down the exact identity of the gem.


Spectrographs

A spectrograph is an instrument that separates light into its wavelengths and records the data. A spectrograph typically has a multi-channel detector system or camera that detects and records the spectrum of light. The term was first used in 1876 by Dr. Henry Draper when he invented the earliest version of this device, and which he used to take several photographs of the spectrum of Vega. This earliest version of the spectrograph was cumbersome to use and difficult to manage. There are several kinds of machines referred to as ''spectrographs'', depending on the precise nature of the waves. The first spectrographs used
photographic paper Photographic paper is a coated paper, paper coated with a light-sensitive chemical, used for making photographic prints. When photographic paper is exposed to light, it captures a latent image that is then Photographic developer, developed to form ...
as the detector. The plant pigment phytochrome was discovered using a spectrograph that used living plants as the detector. More recent spectrographs use electronic detectors, such as CCDs which can be used for both visible and UV light. The exact choice of detector depends on the wavelengths of light to be recorded. A spectrograph is sometimes called polychromator, as an analogy to
monochromator A monochromator is an optics, optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input. The name is . Uses A device that can ...
.


Stellar and solar spectrograph

The star
spectral classification ''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max M ...
and discovery of the
main sequence In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or d ...
, Hubble's law and the Hubble sequence were all made with spectrographs that used photographic paper.
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
contains both a near-infrared spectrograph ( NIRSpec) and a mid-infrared spectrograph ( MIRI).


Echelle spectrograph

An echelle-based spectrograph uses two
diffraction grating In optics, a diffraction grating is an optical grating with a periodic structure that diffraction, diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions (i.e., different diffractio ...
s, rotated 90 degrees with respect to each other and placed close to one another. Therefore, an entrance point and not a slit is used and a CCD-chip records the spectrum. Both gratings have a wide spacing, and one is blazed so that only the first order is visible and the other is blazed with many higher orders visible, so a very fine spectrum is presented to the CCD.


Slitless spectrograph

In conventional spectrographs, a slit is inserted into the beam to limit the image extent in the dispersion direction. A slitless spectrograph omits the slit; this results in images that convolve the image information with spectral information along the direction of dispersion. If the field is not sufficiently sparse, then spectra from different sources in the image field will overlap. The trade is that slitless spectrographs can produce spectral images much more quickly than scanning a conventional spectrograph. That is useful in applications such as solar physics where time evolution is important.


See also

*
Circular dichroism Circular dichroism (CD) is dichroism involving circular polarization, circularly polarized light, i.e., the differential Absorption (electromagnetic radiation), absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand ci ...
* Cosmic Origins Spectrograph * Czerny-Turner monochromator * Imaging spectrometer * List of astronomical instruments * List of light sources * Long-slit spectroscopy * Prism spectrometer * Scanning mobility particle sizer *
Spectrogram A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time. When applied to an audio signal, spectrograms are sometimes called sonographs, voiceprints, or voicegrams. When the data are represen ...
* Spectrometer * Spectroradiometer *
Spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
* Virtually imaged phased array


References


Bibliography

* J. F. James and R. S. Sternberg (1969), ''The Design of Optical Spectrometers'' (Chapman and Hall Ltd) * James, John (2007), ''Spectrograph Design Fundamentals'' (Cambridge University Press) * Browning, John (1882),
How to work with the spectroscope : a manual of practical manipulation with spectroscopes of all kinds
' *


External links


Photographs of spectrographs used in the Lick Observatory from the Lick Observatory Records Digital Archive, UC Santa Cruz Library's Digital Collections
{{Authority control Electronic test equipment Signal processing Measuring instruments Laboratory equipment German inventions Telescope types